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1 General

1.1 Introduction

vbcc is a highly optimizing portable and retargetable ISO C compiler. It supports ISO
C according to ISO/IEC 9899:1989 and a subset of the new standard ISO/IEC 9899:1999
(C99).

It is split into a target-independent and a target-dependent part, and provides complete
abstraction of host- and target-arithmetic. Therefore, it fully supports cross-compiling for
8, 16, 32 and 64bit architectures.

Embedded systems are supported by features like different pointer-sizes (e.g. differently
sized function- and object-pointers or near- and far-pointers), ROM-able code, inline-
assembly, bit-types, interrupt-handlers, section-attributes, stack-calculation and many oth-
ers (depending on the backend).

vbcc provides a large set of aggressive high-level optimizations (see Section 3.4 [Optimiza-
tions], page 16) as well as target-specific optimizations to produce faster or smaller code.
Rather than restricting analysis and optimization to single functions or files, vbcc is able
to optimize across functions and even modules. Target-independent optimizations include:

− cross-module function-inlining

− partial inlining of recursive functions

− inter-procedural data-flow analysis

− inter-procedural register-allocation

− register-allocation for global variables

− global common-subexpression-elimination

− global constant-propagation

− global copy-propagation

− dead-code-elimination

− alias-analysis

− loop-unrolling

− induction-variable elimination

− loop-invariant code-motion

− loop-reversal

1.2 Legal

vbcc is copyright in 1995-2011 by Volker Barthelmann.

This archive may be redistributed without modifications and used for non-commercial pur-
poses.

Distributing modified versions and commercial usage needs my written consent.

This copyright applies to vc, vbcc and vsc.

This archive may contain other tools (e.g. assemblers or linkers) which do not fall under
this license. Please consult the corresponding documentation of these tools.
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vbcc contains the preprocessor ucpp by Thomas Pornin. Included is the copyright notice of
ucpp (note that this license does not apply to vbcc or any other part of this distribution):

/*

* (c) Thomas Pornin 1999, 2000

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 4. The name of the authors may not be used to endorse or promote

* products derived from this software without specific prior written

* permission.

*

* THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR

* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*

*/

1.3 Installation

The vbcc directory tree looks as follows:

vbcc/bin The executables.

vbcc/config

Config files for the frontend.

vbcc/targets/<target>

Subdirectory containing all files specific to a certain target (e.g. m68k-amigaos
or ppc-eabi).

1.3.1 Installing for Unix

1. Extract the archive.

2. Set the environment variable VBCC to the vbcc directory. Depending on your shell this
might be done e.g. by
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VBCC=<prefix>/vbcc

or

setenv VBCC <prefix>/vbcc

3. Include <prefix>/vbcc/bin to your search-path. Depending on your shell this might be
done e.g. by

PATH=<prefix>/vbcc/bin:"$PATH"

or

setenv PATH <prefix>/vbcc/bin:"$PATH"

1.3.2 Installing for DOS/Windows

1. Extract the archive.

2. Set the environment variable VBCC to the vbcc directory.

set VBCC=<prefix>\vbcc

3. Include <prefix>/vbcc/bin to your search-path.

set PATH=<prefix>\vbcc\bin;%PATH%

1.3.3 Installing for AmigaOS

Since vbcc 0.8g there is an Amiga Installer, which lets you install the binary and tar-
get archives with a simple mouse click. vbcc for AmigaOS/MorphOS is divided into the
following packages:

vbcc_bin_amigaos68k

Binaries for AmigaOS 2.x/3.x (680x0).

vbcc_bin_amigaosppc

Binaries for AmigaOS 4.x (PowerPC).

vbcc_bin_morphos

Binaries for MorphOS (PowerPC).

vbcc_bin_powerup

Additional PPC-native binaries using the PowerUp kernel for AmigaOS 3.x.

vbcc_bin_warpos

Additional PPC-native binaries using the WarpOS kernel for AmigaOS 3.x.

vbcc_target_m68k-amigaos

Header files and libraries for AmigaOS/M68k.

vbcc_target_ppc-amigaos

Header files and libraries for AmigaOS 4.x.

vbcc_target_ppc-morphos

Header files and libraries for MorphOS.
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vbcc_target_ppc-powerup

Header files and libraries for PowerUp.

vbcc_target_ppc-warpos

Header files and libraries for WarpOS.

Usually you will install the binary archive for your host architecture of choice, then add as
many target archives you need.

When installing manually it is recommended to add the following assigns to your
s:User-Startup file (only do the assignments required for the installed targets):

assign >NIL: vbcc: <path to vbcc directory>

assign >NIL: C: vbcc:bin add

assign >NIL: vincludeos3: vbcc:targets/m68k-amigaos/include

assign >NIL: vincludeos3: <path to your AmigaOS3 header files> ADD

assign >NIL: vlibos3: vbcc:targets/m68k-amigaos/lib

assign >NIL: vincludeos4: vbcc:targets/ppc-amigaos/include

assign >NIL: vincludeos4: <path to your AmigaOS4 header files> ADD

assign >NIL: vlibos4: vbcc:targets/ppc-amigaos/lib

assign >NIL: vincludemos: vbcc:targets/ppc-morphos/include

assign >NIL: vincludemos: <path to your MorphOS header files> ADD

assign >NIL: vlibmos: vbcc:targets/ppc-morphos/lib

assign >NIL: vincludepup: vbcc:targets/ppc-powerup/include

assign >NIL: vincludepup: <path to your AmigaOS3 header files> ADD

assign >NIL: vlibpup: vbcc:targets/ppc-powerup/lib

assign >NIL: vincludewos: vbcc:target/ppc-warpos/include

assign >NIL: vincludewos: <path to your AmigaOS3 header files> ADD

assign >NIL: vlibwos: vbcc:target/ppc-warpos/lib

Also, the stack-size has to be increased from the default, for those binaries which don’t
do that automatically (e.g. AmigaOS4). 64KB is a sensible value, for very large projects
higher values might be necessary.

For writing AmigaOS/MorphOS programs you will need the appropriate system header
files. Please use NDK 3.9 or later for AmigaOS/68k, as the proto/inline headers have been
created with it.

There are different configuration files provided in the config-subdirectory to choose differ-
ent targets (i.e. the system you want to generate programs for) and hosts (i.e. the system
you want the compiler an tools to run on). The general naming-scheme for these files ist
<target> <host>.

Available config files, when all targets are installed, are aos68k (AmigaOS on M68k), aosppc
(AmigaOS4 on PPC using vclib), newlib (AmigaOS4 on PPC using newlib), morphos (PPC
systems running MorphOS), powerup (PPC boards using the PowerUp system), warpos
(PPC boards using the WarpOS system).
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You can choose one of these systems using the +-option of vc, e.g.

vc +aos68k_powerup ...

will compile for AmigaOS/68k using the compiler running on PowerUp.

You may choose to create copies of some of these configuration files with simpler names.
E.g. if you usually want the compiler to run on WarpOS you could copy aos68k_warpos

to aos68k, warpos_warpos to warpos and so on. Then you can just specify the target and
your preferred host system will be chosen automatically.

Additionally, you may copy the configuration file for your preferred host/target-combination
to vc.config. This configuration will be chosen by default if you do not specify anything.

By default, the target-only-specifications use 68k-native tools on AmigaOS 2.x/3.x, e.g.
+warpos will create code for WarpOS, but the compiler and tools will run on the 68k. The
default vc.config will then create code for 68k using tools running on 68k. Having installed
the MorphOS-native binary archive instead, the default vc.config will create PPC code
for MorphOS using tools running on MorphOS.

1.4 Tutorial

Now you should be able to use vbcc. To compile and link the program hello.c, type

vc hello.c

The file hello.c will be compiled and linked to create the executable a.out in the current
directory.

vc hello.c -o hello

will do the same, but the created executable will be called hello.

vc -c t1.c t2.c

will compile t1.c and t2.c without linking, creating the object files t1.o and t2.o.

vc t1.o t2.o -o tt

will link them together and create the executable tt.

If your program uses floating point, you may have to link with a math-library. The details
are dependent on the target, but usually -lm will be suitable (for AmigaOS on m68k choose
one of -lmieee, -lm881 or -lm040).

vc calc.c -o calc -lmieee
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2 The Frontend

This chapter describes vc, the frontend for vbcc. It knows how to deal with different file
types and optimization settings and will call the compiler, assembler and linker. It is not
recommended to call the different translation-phases directly. vc provides an easy-to-use
interface which is mostly compatible to Unix cc.

2.1 Usage

The general syntax for calling vc

vc [options] file1 file2 ...

processes all files according to their suffix and links all objects together (unless any of -E,
-S, -c is specified). The following file types are recognized:

.c C source

.i already preprocessed C source

.scs assembly source to be fed to the scheduler

.asm

.s assembly source

.obj

.o object file

Usually pattern matching is supported - however this depends on the port and the host
system.

The options recognized by vc are:

-v Verbose mode. Prints all commands before executing them.

-vv Very verbose. Displays some internals as well.

-Ox Sets the optimization level.
-O0 is equivalent to -O=0.
-O will activate some optimizations (at the moment -O=991).
-O2 will activate most optimizations (at the moment -O=1023 -schedule).
-O3 will activate all optimizations (at the moment -O=~0 -schedule).
-O4 will activate full cross-module-optimization.

Also, -O3 will activate cross-module-optimizations. All source files specified
on the command line will be passed to the compiler at once. Only one
assembly/object-file will be produced (by default the name is the name of the
first source file with corresponding suffix).

When compiling with -O4 and -c vbcc will not produce real object files but
special files containing all necessary information to defer optimization and code-
generation to link-time. This is useful to provide all files of a project to the
optimizer and make full use of cross-module optimizations. Note that you must
use vc to do the linking. vc will detect and handle these files correctly. They
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can not be linked directly. Also, make sure to pass all relevant compiler options
also to the linker-command.

Higher values may or may not activate even more optimizations. The default
is -O=1. It is also possible to specify an exact value with -O=n. However, I do
not recommend this unless you know exactly what you are doing.

-o file Save the target as file (default for executables is a.out).

-E Save the preprocessed C sources with .i suffix.

-S Do not assemble. Save the compiled files with .asm suffix.

-SCS Do not schedule. Save the compiled files with .scs suffix.

-c Do not link. Save the compiled files with .o suffix.

-k Keep all intermediate files. By default all generated files except the source files
and the targets are deleted.

-Dstr #define a preprocessor symbol, e.g. -DAMIGA or -DCPU=68000. The former
syntax is equivalent to:

#define AMIGA 1

The latter form is equivalent to:

#define CPU 68000

-Ipath Add path to the include-search-path.

-lulib Link with library ulib.

-Lpath Add path to the library-search-path. This is passed through to the linker.

-static Instruct the linker to link against static libraries. This may override the default
to link against dynamic libraries first.

-nostdlib

Do not link with standard-startup/libraries. Useful only for people who know
what they are doing.

-notmpfile

Do not use names from tmpnam() for temporary files.

-schedule

Invoke the instruction-scheduler, if available.

+file Use file as config-file.

All other options are passed through to vbcc.

2.2 Configuration

vc needs a config file to know how to call all the translation phases (compiler, assembler,
linker). Unless a different file is specified using the +-option, it will look for a file vc.config
(vc.cfg for DOS/Windows).

On AmigaOS vc will search in the current directory, in ENV: and VBCC:.

On Unix vc will search in the current directory followed by /etc/.
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On DOS/Windows it will search in the current directory.

If the config file was not found in the default search-paths and an environment variable
$VBCC is set, vc will also look in $VBCC/config.

Once a config file is found, it will be treated as a collection of additional command line
arguments. Every line of the file will be used as one argument. So no quoting shall be used
and furthermore must each argument be placed on its own line.

The following options can be used to tell vc how to call the translation phases (they will
usually be contained in the config-file):

-pp=string

The preprocessor will be called like in printf(string,opts,infile,outfile),
e.g. the default for vcpp searching the includes in vinclude: and defining __

STDC__) is -pp=vcpp -Ivinclude: -D__STDC__=1 %s %s %s. Note that there is
an internal preprocessor, called ucpp, since V0.8, you usually don’t need this
option any more.

-cc=string

For the compiler. Note that you cannot use vc to call another compiler than
vbcc. But you can call different versions of vbcc this way, e.g.: -cc=vbccm68k
-quiet or -cc=vbcci386 -quiet

-isc=string

The same for the scheduler, e.g.: -isc=vscppc -quiet %s %s Omit, if there is
no scheduler for the architecture.

-as=string

The same for the assembler, e.g.: -as=vasmm68k_mot -quiet -Fhunk -phxass

-opt-pea -opt-clr %s -o %s or -as=as %s -o %s

-rm=string

This is the string for the delete command and takes only one argument, e.g.
-rm=delete quiet %s or -rm=rm %s

-ld=string

This is for the linker and takes three arguments. The first one are the object files
(separated by spaces), the second one the user specified libraries and the last one
the name of the resulting executable. This has to link with proper startup-code
and c-libraries, e.g.: -ld=vlink -x -Bstatic -Cvbcc -nostdlib -Lvlibos3:

vlibos3:startup.o %s %s -lvc -o %s or -ld=ld /usr/lib/crt0.o %s %s -lc

-o %s

-l2=string

The same like -ld, but standard-startup and -libraries should not be linked;
used when -nostdlib is specified.

-ldnodb=string

This option string is inserted in the linker command before specifying the li-
braries, whenever an executable without debugging information and symbols
should be created (AKA as a ’stripped’ executable).
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-ldstatic=string

This option string is inserted in the linker command before specifying the li-
braries when static linking was requested with option -static.

All those strings should tell the command to omit any output apart from error messages
if possible. However for every of those options there exists one with an additional ‘v’, i.e.
-ppv=, -asv=, etc. which should produce some output, if possible. If vc is invoked with the
-vv option the verbose commands will be called, if not the quiet ones will be used.

‘-ul=string’
Format for additional libraries specified with -l<lib>. The result of
printf(string,lib) will be added to the command invoking the linker.
Examples are: -ul=vlib:%s.lib or -ul=-l%s
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3 The Compiler

This chapter describes the target-independent part of the compiler. It documents the op-
tions and extensions which are not specific to a certain target. Be sure to also read the
chapter on the backend you are using. It will likely contain important additional information
like data-representation or additional options.

3.1 General Compiler Options

Usually vbcc will be called by vc. However, if called directly it expects the following syntax:

vbcc<target> [options] file

The following options are supported by the machine independent part of vbcc (and will be
passed through by vc):

-quiet Do not print the copyright notice.

-ic1 Write the intermediate code before optimizing to file.ic1.

-ic2 Write the intermediate code after optimizing to file.ic2.

-debug=n Set the debug level to n.

-o=ofile Write the generated assembler output to <ofile> rather than the default file.

-noasm Do not generate assembler output (only for testing).

-O=n Turns optimizing options on/off; every bit set in n turns on an option. Usually
the predefined optimization options by the compiler driver should be used. See
Section 3.4 [Optimizations], page 16.

-speed Turns on optimizations which improve speed even if they increase code-size
quite a bit.

-size Turns on optimizations which improve code-size even if they have negative effect
on execution-times.

-final This flag is useful only with higher optimization levels. It tells the compiler
that all relevant files have been provided to the compiler (i.e. it is the link-
stage). The compiler will try to eliminate all functions and variables which are
not referenced.

See Section 3.4.13 [Unused Object Elimination], page 27.

-wpo Create a high-level pseudo object for cross-module optimization (see
Section 3.4.16 [Cross-Module Optimizations], page 30).

-g Create debug output. Whether this is supported as well as the format of the
debug information depends on the backend. Some backends may offer additional
options to control the generation of debug output.

Usually DWARF2-output will be generated by default, if possible.

Also, options regarding optimization and code-generation may affect the debug
output (see Section 3.4.19 [Debugging Optimized Code], page 31).
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-cmd=<file>

A file containing additional command line options can be specified using this
command. This may be useful for very long command lines.

-c99 Switch to the 1999 ISO standard for C /ISO/IEC9899:1999). Currently the
following changes of C99 are handled:

− long long int (not supported by all backends)

− flexible array members as last element of a struct

− mixed statements and declarations

− declarations within for-loops

− inline function-specifier

− restrict-qualifier

− new reserved keywords

− //-comments

− vararg-macros

− _Pragma

− implicit int deprecated

− implicit function-declarations deprecated

− increased translation-limits

− designated initializers

− non-constant initializers for automatic aggregates

− compound literals

− variable-length arrays (incomplete)

-unsigned-char

Make the unqualified type of char unsigned.

-maxoptpasses=n

Set maximum number of optimizer passes to n. See Section 3.4 [Optimizations],
page 16.

-inline-size=n

Set the maximum ’size’ of functions to be inlined. See Section 3.4.11 [Function
Inlining], page 25.

-inline-depth=n

Inline functions up to n nesting-levels (including recursive calls). The default
value is 1. Be careful with values greater than 2. See Section 3.4.11 [Function
Inlining], page 25.

-unroll-size=n

Set the maximum ’size’ of unrolled loops. See Section 3.4.10 [Loop Unrolling],
page 23.

-unroll-all

Unroll loops with a non-constant number of iterations if the number can be cal-
culated at runtime before entering the loop. See Section 3.4.10 [Loop Unrolling],
page 23.
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-no-inline-peephole

Some backends provide peephole-optimizers which perform simple optimiza-
tions on the assembly code output by vbcc. By default, these optimizations
will also be performed on inline-assembly code of the application. This switch
turns off this behaviour. See Section 3.5.3 [Inline-Assembly Functions], page 33.

-fp-associative

Floating point operations do not obey the law of associativity, e.g.
(a+b)+c==a+(b+c) is not true for all floating point numbers a,b,c. Therefore
certain optimizations depending on this property cannot be performed on
floating point numbers.

This option tells vbcc to treat floating point operations as associative and
perform those optimizations even if that may change the results in some cases
(not ISO conforming).

-no-alias-opt

Do not perform type-based alias analysis. See Section 3.4.14 [Alias Analysis],
page 28.

-no-multiple-ccs

If the backend supports multiple condition code registers, vbcc will try to use
them when optimizing. This flag prevents vbcc from using them.

-double-push

On targets where function-arguments are passed in registers but also stack-slots
are left empty for such arguments, pass those arguments both in registers and
on the stack.

This generates less efficient code but some broken code (e.g. code which calls
varargs functions without correct prototypes in scope) may work.

-short-push

In the presence of a prototype, no promotion will be done on function argu-
ments. For example, <char> will be passed as <char> rather than <int> and
<float> will not be promoted to <double>. This may be more efficient on small
targets.

However, please note that this feature may not be supported by all backends
and that using this option breaks ANSI/ISO conformance. For example, a
function with a <char> parameter must never be called without a prototype in
scope.

-soft-float

On targets supporting this flag, software floating point emulation will be used
rather than a hardware FPU. Please consult the corresponding backend docu-
mentation when using this flag.

-stack-check

Insert code for dynamic stack checking/extending if the backend and the envi-
ronment support this feature.

-ansi

-iso Switch to ANSI/ISO mode.
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− In ISO mode warning 209 will be printed by default.

− Inline-assembly functions are not recognized.

− Assignments between pointers to <type> and pointers to unsigned <type>
will cause warnings.

-maxerrors=n

Abort the compilation after n errors; do not stop if n==0.

-dontwarn=n[,n...]

Suppress warning number n; suppress all warnings if n<0. Multiple warnings
may be separated by commas. See Section 3.2 [Errors and Warnings], page 15

-warn=n Turn on warning number n; turn on all warnings if n<0. See Section 3.2 [Errors
and Warnings], page 15

-strip-path

Strip the path of filenames from error messages. Error messages may look more
convenient that way, but message browsers or similar programs might need full
paths.

-no-include-stack

Do not display the include stack in error messages.

-+

-cpp-comments

Allow C++ style comments (not ISO89 conforming).

-no-trigraphs

Do not recognize trigraphs (not ISO conforming).

-E Write the preprocessor output to <file>.i.

-deps Write a make-style dependency-line to <file>.dep.

-deps-for-libs

By default, -deps will not include files that are included using the syntax
#include <...>. Specify this option to add those files as well.

-reserve-reg=<register>

Reserve that register not to be used by the backend. This option is dangerous
and must only be used for registers otherwise available for the register allocator.
If it used for special registers or registers used internally by the backend, it may
be ignored, lead to corrupt code or even cause internal errors from the compiler.

Only use if you know what you are doing!

-dontkeep-initialized-data

By default vbcc keeps all data of initializations in memory during the whole
compilation (it can sometimes make use of this when optimizing). This can
take some amount of memory, though. This options tells vbcc to keep as little
of this data in memory as possible. This has not yet been tested very well.

The assembler output will be saved to file.asm (if file already contained a suffix, this
will first be removed; same applies to .ic1/.ic2)
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3.2 Errors and Warnings

vbcc knows the following kinds of messages:

Fatal Errors
Something is badly wrong and further compilation is impossible or pointless.
vbcc will abort. E.g. no source file or really corrupt source.

Errors There was an error and vbcc cannot generate useful code. Compilation contin-
ues, but no code will be generated. E.g. unknown identifiers.

Warnings (1)
Warnings with ISO-violations. The program is not ISO-conforming, but vbcc
will generate code that could be what you want (or not). E.g. missing semi-
colon.

Warnings (2)
The code has no ISO-violations, but contains some strange things you should
perhaps look at. E.g. unused variables.

Errors or the first kind of warnings are always displayed and cannot be suppressed.

Only some warnings of the second kind are turned on by default. Many of them are very
useful for some but annoying to others, and their usability may depend on programming
style. Everybody is recommended to find their own preferences.

A good way to do this is starting with all warnings turned on by -warn=-1. Now all possible
warnings will be issued. Everytime a warning that is not considered useful appears, turn
that one off with -dontwarn=n.

See Chapter 13 [List of Errors], page 87 for a list of all diagnostic messages available.

See Chapter 2 [The Frontend], page 7 to find out how to configure vc to your preferences.

3.3 Data Types

vbcc can handle the following atomic data types:

signed char

unsigned char

signed short

unsigned short

signed int

unsigned int

signed long int

unsigned long int

signed long long int

(with -c99)

unsigned long long int

(with -c99)

float

double
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long double

The default signedness for integer types is signed.

Depending on the backend, some of these types can have identical representation. The
representation (size, alignment etc.) of these types usually varies between different backends.
vbcc is able to support arbitrary implementations.

Backends may be restricted and omit some types (e.g. floating point on small embedded
architectures) or offer additional types. E.g. some backends may provide special bit types
or different pointer types.

3.4 Optimizations

vbcc offers different levels of optimization, ranging from fast compilation with straight-
forward code suitable for easy debugging to highly aggressive cross-module optimizations
delivering very fast and/or tight code.

This section describes the general phases of compilation and gives a short overview on the
available optimizations.

In the first compilation phase every function is parsed into a tree structure one expression
after the other. Type-checking and some minor optimizations like constant-folding or some
algebraic simplifications are done on the trees. This phase of the translation is identical in
optimizing and non-optimizing compilation.

Then intermediate code is generated from the trees. In non-optimizing compilation tem-
poraries needed to evaluate the expression are immediately assigned to registers while in
optimizing compilation, a new variable is generated for each temporary. Slightly different
intermediate code is produced in optimizing compilation. Some minor optimizations are
performed while generating the intermediate code (simple elimination of unreachable code,
some optimizations on branches etc.).

After intermediate code for the whole function has been generated, simple register allocation
may be done in non-optimizing compilation if bit 1 has been set in the -O option. Afterwards,
the intermediate code is passed to the code generator and then all memory for the function,
its variables etc. is freed.

In optimizing compilation flowgraphs are constructed, data flow analysis is performed and
many passes are made over the function’s intermediate code. Code may be moved around,
new variables may be added, other variables removed etc. etc. (for more detailed informa-
tion on the optimizations look at the description for the -O option below).

Many of the optimization routines depend on each other. If one routine finds an optimiza-
tion, this often enables other routines to find further ones. Also, some routines only do a
first step and let other routines ’clean up’ afterwards. Therefore vbcc usually makes many
passes until no further optimizations are found. To avoid possible extremely long optimiza-
tion times, the number of those passes can be limited with -maxoptpasses (the default is
max. 10 passes). vbcc will display a warning if more passes might be useful.

Depending on the optimization level, a whole translation-unit or even several translation-
units will be read at once. Also, the intermediate code for all functions may be kept in
memory during the entire compilation. Be aware that higher optimization levels can take
much more time and memory to complete.
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The following table lists the optimizations which are activated by bits in the argument of
the -O option. Note that not all combinations are valid. It is heavily recommended not
to fiddle with this option but just use one of the settings provided by vc (e.g. -O0 - -O4).
These options also automatically handle actions like invoking the scheduler or cross-module
optimizer.

Bit 0 (1) Perform Register allocation. See Section 3.4.1 [Register Allocation], page 18.

Bit 1 (2) This flag turns on the optimizer. If it is set to zero, no global optimizations will
be performed, no matter what the other flags are set to. Slightly different inter-
mediate code will be generated by the first translation phases and a flowgraph
will be constructed. See Section 3.4.2 [Flow Optimizations], page 18.

Bit 2 (4) Perform common subexpression elimination (see Section 3.4.3 [Common Subex-
pression Elimination], page 19) and copy propagation (see Section 3.4.4 [Copy
Propagation], page 20). This can be done globally or only within basic blocks
depending on bit 5.

Bit 3 (8) Perform constant propagation (see Section 3.4.5 [Constant Propagation],
page 20). This can be done globally or only within basic blocks depending on
bit 5.

Bit 4 (16) Perform dead code elimination (see Section 3.4.6 [Dead Code Elimination],
page 21).

Bit 5 (32) Some optimizations are available in local and global versions. This flag turns
on the global versions. Several major optimizations will not be performed and
only one optimization pass is done unless this flag is set.

Bit 6 (64) Reserved.

Bit 7 (128)
vbcc will try to identify loops and perform some loop optimizations. See
Section 3.4.8 [Strength Reduction], page 22 and Section 3.4.7 [Loop-Invariant
Code Motion], page 21. These only work if bit 5 (32) is set.

Bit 8 (256)
vbcc tries to place variables at the same memory addresses if possible (see
Section 3.4.13 [Unused Object Elimination], page 27).

Bit 9 (512)
Reserved.

Bit 10 (1024)
Pointers are analyzed and more precise alias-information is generated (see
Section 3.4.14 [Alias Analysis], page 28). Using this information, better
data-flow analysis is possible.

Also, vbcc tries to place global/static variables and variables which have their
address taken in registers, if possible (see Section 3.4.1 [Register Allocation],
page 18).

Bit 11 (2048)
More aggressive loop optimizations are performed (see Section 3.4.10 [Loop
Unrolling], page 23 and Section 3.4.9 [Induction Variable Elimination], page 22).
Only works if bit 5 (32) and bit 7 (128) are set.
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Bit 12 (4096)
Perform function inlining (see Section 3.4.11 [Function Inlining], page 25).

Bit 13 (8192)
Reserved.

Bit 14 (16384)
Perform inter-procedural analysis (see Section 3.4.15 [Inter-Procedural Analy-
sis], page 29) and cross-module optimizations (see Section 3.4.16 [Cross-Module
Optimizations], page 30).

Also look at the documentation for the target-dependent part of vbcc. There may be
additional machine specific optimization options.

3.4.1 Register Allocation

This optimization tries to assign variables or temporaries into machine registers to save
time and space. The scope and details of this optimization vary on the optimization level.

With -O0 only temporaries during expression-evaluation are put into registers. This may
be useful for debugging.

At the default level (without the optimizer), additionally local variables whose address has
not been taken may be put into registers for a whole function. The decision which variables
to assign to registers is based on very simple heuristics.

In optimizing compilation a different algorithm will be used which uses hierarchical live-
range-splitting. This means that variables may be assigned to different registers at different
time. This typically allows to put the most used variables into registers in all inner loops.
Note that this means that a variable can be located in different registers at different loca-
tions. Most debuggers can not handle this.

Also, the use of registers can be guided by information provided by the backend, if available.
For architectures which are not very orthogonal this allows to choose registers which are
better suited to certain operations. Constants can also be assigned to registers, if this is
beneficial for the architecture.

The options -speed and -size change the behaviour of the register-allocator to optimize
for speed or size of the generated code.

On low optimization levels, only local variables whose address has not been taken will be
assigned to registers. On higher optimization levels, vbcc will also try to assign global/static
variables and variables which had their address taken, to registers. Typically, this occurs
during loops. The variables will be loaded into a register before entering a loop and stored
back after the loop. However, this can only be done if vbcc can detect that the variable is
not modified in unpredictable ways. Therefore, alias-analysis is crucial for this optimization.

During register-allocation vbcc will use information on register usage of functions to mini-
mize loading/saving of registers between function-calls. Therefore, other optimizations will
affect register allocation. See Section 3.4.14 [Alias Analysis], page 28, Section 3.4.15 [Inter-
Procedural Analysis], page 29 and Section 3.4.16 [Cross-Module Optimizations], page 30.

3.4.2 Flow Optimizations

When optimizing vbcc will construct a flowgraph for every function and perform optimiza-
tions based on control-flow. For example, code which is unreachable will be removed and
branches to other branches or branches around branches will be simplified.
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Also, unused labels will be removed and basic blocks united to allow further optimizations.

For example, the following code

void f(int x, int y)

{

if(x > y)

goto label1;

q();

label1:

goto label2;

r();

label2:

}

will be optimized like:

void f(int x, int y)

{

if(x <= y)

q();

}

Identical code at the beginning or end of basic blocks will be moved to the
successors/predecessors under certain conditions.

3.4.3 Common Subexpression Elimination

If an expression has been computed on all paths leading to a second evaluation and vbcc

knows that the operands have not been changed, then the result of the original evaluation
will be reused instead of recomputing it. Also, memory operands will be loaded into registers
and reused instead of being reloaded, if possible.

For example, the following code

void f(int x, int y)

{

q(x * y, x * y);

}

will be optimized like:

void f(int x, int y)

{

int tmp;

tmp = x * y;

q(tmp, tmp);

}

Depending on the optimization level, vbcc will perform this optimization only locally within
basic blocks or globally across an entire function.

As this optimization requires detecting whether operand of an expression may have changed,
it will be affected by other optimizations. See Section 3.4.14 [Alias Analysis], page 28,
Section 3.4.15 [Inter-Procedural Analysis], page 29 and Section 3.4.16 [Cross-Module Opti-
mizations], page 30.
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3.4.4 Copy Propagation

If a variable is assigned to another one, the original variable will be used as long as it is not
modified. This is especially useful in conjunction with other optimizations, e.g. common
subexpression elimination.

For example, the following code

int y;

int f()

{

int x;

x = y;

return x;

}

will be optimized like:

int y;

int f()

{

return y;

}

Depending on the optimization level, vbcc will perform this optimization only locally within
basic blocks or globally across an entire function.

As this optimization requires detecting whether a variable may have changed, it will be
affected by other optimizations. See Section 3.4.14 [Alias Analysis], page 28, Section 3.4.15
[Inter-Procedural Analysis], page 29 and Section 3.4.16 [Cross-Module Optimizations],
page 30.

3.4.5 Constant Propagation

If a variable is known to have a constant value (this includes addresses of objects) at some
use, it will be replaced by the constant.

For example, the following code

int f()

{

int x;

x = 1;

return x;

}

will be optimized like:

int f()

{

return 1;

}

Depending on the optimization level, vbcc will perform this optimization only locally within
basic blocks or globally across an entire function.
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As this optimization requires detecting whether a variable may have changed, it will be
affected by other optimizations. See Section 3.4.14 [Alias Analysis], page 28, Section 3.4.15
[Inter-Procedural Analysis], page 29 and Section 3.4.16 [Cross-Module Optimizations],
page 30.

3.4.6 Dead Code Elimination

If a variable is assigned a value which is never used (either because it is overwritten or its
lifetime ends), the assignment will be removed. This optimization is crucial to remove code
which has become dead due to other optimizations.

For example, the following code

int x;

void f()

{

int y;

x = 1;

y = 2;

x = 3;

}

will be optimized like:

int x;

void f()

{

x = 3;

}

As this optimization requires detecting whether a variable may be read, it will be affected
by other optimizations. See Section 3.4.14 [Alias Analysis], page 28, Section 3.4.15 [Inter-
Procedural Analysis], page 29 and Section 3.4.16 [Cross-Module Optimizations], page 30.

3.4.7 Loop-Invariant Code Motion

If the operands of a computation within a loop will not change during iterations, the com-
putation will be moved outside of the loop.

For example, the following code

void f(int x, int y)

{

int i;

for (i = 0; i < 100; i++)

q(x * y);

}

will be optimized like:

void f(int x, int y)

{

int i, tmp = x * y;
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for (i = 0; i < 100; i++)

q(tmp);

}

As this optimization requires detecting whether operands of an expression may
have changed, it will be affected by other optimizations. See Section 3.4.14 [Alias
Analysis], page 28, Section 3.4.15 [Inter-Procedural Analysis], page 29 and Section 3.4.16
[Cross-Module Optimizations], page 30.

3.4.8 Strength Reduction

This is an optimization applied to loops in order to replace more costly operations (usually
multiplications) by cheaper ones (typically additions). Linear functions of an induction
variable (a variable which is changed by a loop-invariant value in every iteration) will be
replaced by new induction variables. If possible, the original induction variable will be
eliminated.

As array accesses are actually composed of multiplications and additions, they often benefit
significantly by this optimization.

For example, the following code

void f(int *p)

{

int i;

for (i = 0; i < 100; i++)

p[i] = i;

}

will be optimized like:

void f(int *p)

{

int i;

for (i = 0; i < 100; i++)

*p++ = i;

}

As this optimization requires detecting whether operands of an expression may
have changed, it will be affected by other optimizations. See Section 3.4.14 [Alias
Analysis], page 28, Section 3.4.15 [Inter-Procedural Analysis], page 29 and Section 3.4.16
[Cross-Module Optimizations], page 30.

3.4.9 Induction Variable Elimination

If an induction variable is only used to determine the number of iterations through the loop,
it will be removed. Instead, a new variable will be created which counts down to zero. This is
generally faster and often enables special decrement-and-branch or decrement-and-compare
instructions.

For example, the following code
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void f(int n)

{

int i;

for (i = 0; i < n; i++)

puts("hello");

}

will be optimized like:

void f(int n)

{

int tmp;

for(tmp = n; tmp > 0; tmp--)

puts("hello");

}

As this optimization requires detecting whether operands of an expression may
have changed, it will be affected by other optimizations. See Section 3.4.14 [Alias
Analysis], page 28, Section 3.4.15 [Inter-Procedural Analysis], page 29 and Section 3.4.16
[Cross-Module Optimizations], page 30.

3.4.10 Loop Unrolling

vbcc reduces the loop overhead by replicating the loop body and reducing the number of
iterations. Also, additional optimizations between different iterations of the loop will often
be enabled by creating larger basic blocks. However, code-size as well as compilation-times
can increase significantly.

This optimization can be controlled by -unroll-size and -unroll-all. -unroll-size

specifies the maximum number of intermediate instructions for the unrolled loop body. vbcc
will try to unroll the loop as many times to suit this value.

If the number of iterations is constant and the size of the loop body multiplied by this
number is less or equal to the value specified by -unroll-size, the loop will be unrolled
completely. If the loop is known to be executed exactly once, it will always be unrolled
completely.

For example, the following code

void f()

{

int i;

for (i = 0; i < 4; i++)

q(i);

}

will be optimized like:

void f()

{

q(0);
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q(1);

q(2);

q(3);

}

If the number of iteration is constant the loop will be unrolled as many times as permitted
by the size of the loop and -unroll-size. If the number of iterations is not a multiple of
the number of replications, the remaining iterations will be unrolled separately.

For example, the following code

void f()

{

int i;

for (i = 0; i < 102; i++)

q(i);

}

will be optimized like:

void f()

{

int i;

q(0);

q(1);

for(i = 2; i < 102;){

q(i++);

q(i++);

q(i++);

q(i++);

}

}

By default, only loops with a constant number of iterations will be unrolled. However,
if -unroll-all is specified, vbcc will also unroll loops if the number of iterations can be
calculated at entry to the loop.

For example, the following code

void f(int n)

{

int i;

for (i = 0; i < n; i++)

q(i);

}

will be optimized like:

void f(int n)

{

int i, tmp;

i = 0;
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tmp = n & 3;

switch(tmp){

case 3:

q(i++);

case 2:

q(i++);

case 1:

q(i++);

}

while(i < n){

q(i++);

q(i++);

q(i++);

q(i++);

}

}

As this optimization requires detecting whether operands of an expression may
have changed, it will be affected by other optimizations. See Section 3.4.14 [Alias
Analysis], page 28, Section 3.4.15 [Inter-Procedural Analysis], page 29 and Section 3.4.16
[Cross-Module Optimizations], page 30.

3.4.11 Function Inlining

To reduce the overhead, a function call can be expanded inline. Passing parameters can
be optimized as the arguments can be directly accessed by the inlined function. Also,
further optimizations are enabled, e.g. constant arguments can be evaluated or common
subexpressions between the caller and the callee can be eliminated. An inlined function call
is as fast as a macro. However (just as with using large macros), code size and compilation
time can increase significantly.

Therefore, this optimization can be controlled with -inline-size and -inline-depth.
vbcc will only inline functions which contain less intermediate instructions than specified
with this option.

For example, the following code

int f(int n)

{

return q(&n,1);

}

void q(int *x, int y)

{

if(y > 0)

*x = *x + y;

else

abort();

}

will be optimized like:
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int f(int n)

{

return n + 1;

}

void q(int *x, int y)

{

if(y > 0)

*x = *x + y;

else

abort();

}

If a function to be inlined calls another function, that function can also be inlined. This
also includes a recursive call of the function.

For example, the following code

int f(int n)

{

if(n < 2)

return 1;

else

return f(n - 1) + f(n - 2);

}

will be optimized like:

int f(int n)

{

if(n < 2)

return 1;

else{

int tmp1 = n - 1, tmp2, tmp3 = n - 2, tmp4;

if(tmp1 < 2)

tmp2 = 1;

else

tmp2 = f(tmp1 - 1) + f(tmp2 - 2);

if(tmp3 < 2)

tmp4 = 1;

else

tmp4 = f(tmp3 - 1) + f(tmp3 - 2);

return tmp2 + tmp4;

}

}

By default, only one level of inlining is done. The maximum nesting of inlining can be set
with -inline-depth. However, this option should be used with care. The code-size can
increase very fast and in many cases the code will be slower. Only use it for fine-tuning
after measuring if it is really beneficial.
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At lower optimization levels a function must be defined in the same translation-unit as the
caller to be inlined. With cross-module optimizations, vbcc will also inline functions which
are defined in other files. See Section 3.4.16 [Cross-Module Optimizations], page 30.

See also Section 3.5.3 [Inline-Assembly Functions], page 33.

3.4.12 Intrinsic Functions

This optimization will replace calls to some known functions (usually library functions)
with calls to different functions or special inline-code. This optimization usually depends
on the arguments to a function. Typical candidates are the printf family of functions and
string-functions applied to string-literals.

For example, the following code

int f()

{

return strlen("vbcc");

}

will be optimized like:

int f()

{

return 4;

}

Note that there are also other possibilities of providing specially optimized library functions.
See Section 3.5.3 [Inline-Assembly Functions], page 33 and Section 3.4.11 [Function Inlining],
page 25.

3.4.13 Unused Object Elimination

Depending on the optimization level, vbcc will try to eliminate different objects and reduce
the size needed for objects.

Generally, vbcc will try to use common storage for local non-static variables with non-
overlapping live-ranges .

At some optimization levels and with -size specified, vbcc will try to order the placement of
variables with static storage-duration to minimize padding needed due to different alignment
requirements. This optimization generally benefits from an increased scope of optimization.
See Section 3.4.16 [Cross-Module Optimizations], page 30.

At higher optimization levels objects and functions which are not referenced are eliminated.
This includes functions which have always been inlined or variables which have always been
replaced by constants.

When using separate compilation, objects and functions with external linkage usually can-
not be eliminated, because they might be referenced from other translation-units. This
precludes also elimination of anything referenced by such an object or function.

However, unused objects and functions with external linkage can be eliminated if -final
is specified. In this case vbcc will assume that basically the entire program is presented
and eliminate everything which is not referenced directly or indirectly from main(). If some
objects are not referenced but must not be eliminated, they have to be declared with the
__entry attribute. Typical examples are callback functions which are called from a library
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function or from anywhere outside the program, interrupt-handlers or other data which
should be preserved. See Section 3.4.16 [Cross-Module Optimizations], page 30.

3.4.14 Alias Analysis

Many optimizations can only be done if it is known that two expressions are not aliased,
i.e. they do not refer to the same object. If such information is not available, worst-case
assumptions have to be made in order to create correct code. In the C language aliasing can
occur by use of pointers. As pointers are generally a very frequently used feature of C and
also array accesses are just disguised pointer arithmetic, alias analysis is very important.

vbcc uses the following methods to obtain aliasing information:

− The C language does not allow accessing an object using an lvalue of a different type.
Exceptions are accessing an object using a qualified version of the same type and
accessing an object using a character type. In the following example p1 and p2 must
not point to the same object:

f(int *p1, long *p2)

{

...

}

vbcc will assume that the source is correct and does not break this requirement of
the C language. If a program does break this requirement and cannot be fixed, then
-no-alias-opt must be specified and some performance will be lost.

− At higher optimization levels, vbcc will try to keep track of all objects a pointer can
point to. In the following example, vbcc will see that p1 can only point to x or y

whereas p2 can only point to z. Therefore it knows that p1 and p2 are not aliased.

int x[10], y[10], z[10];

int f(int a, int b, int c)

{

int *p1, *p2;

if(a < b)

p1 = &x[a];

else

p1 = &y[b];

p2 = &z[c];

...

}

As pointers itself may be aliased and function calls might modify pointers, this
analysis sometimes benefits from a larger scope of optimization. See Section 3.4.15
[Inter-Procedural Analysis], page 29 and Section 3.4.16 [Cross-Module Optimizations],
page 30.

This optimization will alter the behaviour of broken code which uses pointer arithmetic
to step from one object into another.
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− The 1999 C standard provides the restrict-qualifier to help alias analysis. If a pointer
is declared with this qualifier, the compiler may assume that the object pointed to by
this pointer is only aliased by pointers which are derived from this pointer. For a formal
definition of the rules for restrict please consult ISO/IEC9899:1999.

vbcc will make use of this information at higher optimization levels (-c99 must be used
to use this new keyword).

A very useful application for restrict are function parameters. Consider the following
example:

void cross_prod(float *restrict res,

float *restrict x,

float *restrict y)

{

res[0] = x[1] * y[2] - x[2] * y[1];

res[1] = x[2] * y[0] - x[0] * y[2];

res[2] = x[0] * y[1] - x[1] * y[0];

}

Without restrict, a compiler has to assume that writing the results through res can
modify the object pointed to by x and y. Therefore, the compiler has to reload all the
values on the right side twice. With restrict vbcc will optimize this code like:

void cross_prod(float *restrict res,

float *restrict x,

float *restrict y)

{

float x0 = x[0], x1 = x[1], x2 = x[2];

float y0 = y[0], y1 = x[1], y2 = y[2];

res[0] = x1 * y2 - x2 * y1;

res[1] = x2 * y0 - x0 * y2;

res[2] = x0 * y1 - x1 * y0;

}

3.4.15 Inter-Procedural Analysis

Apart from the number of different optimizations a compiler offers, another important point
is the scope of the underlying analysis. If a compiler only looks at small parts of code when
deciding whether to do an optimization, it often cannot prove that a transformation does
not change the behaviour and therefore has to reject it.

Simple compilers only look at single expressions, simple optimizing compilers often restrict
their analysis to basic blocks or extended basic blocks. Analyzing a whole function is
common in today’s optimizing compilers.

This already allows many optimizations but often worst-case assumptions have to be made
when a function is called. To avoid this, vbcc will not restrict its analysis to single functions
at higher optimization levels. Inter-procedural data-flow analysis often allows for example
to eliminate more common subexpressions or dead code. Register allocation and many other
optimizations also sometimes benefit from inter-procedural analysis.
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Further extension of the scope of optimizations is possible by activating cross-module opti-
mizations. See Section 3.4.16 [Cross-Module Optimizations], page 30.

3.4.16 Cross-Module Optimizations

Separate compilation has always been an important feature of the C language. Splitting up
an application into several modules does not only reduce turn-around times and resource-
requirements for compilation, but it also helps writing reusable well-structured code.

However, an optimizer has much more possibilities when it has access to the entire source
code. In order to provide maximum possible optimizations without sacrificing structure and
modularity of code, vbcc can do optimizations across different translation-units. Another
benefit is that cross-module analysis also will detect objects which are declared inconsis-
tently in different translation-units.

Unfortunately common object-code does not contain enough information to perform ag-
gressive optimization, To overcome this problem, vbcc offers two solutions:

− If cross-module optimizations are enabled and several files are passed to vbcc, it will
read in all files at once, perform optimizations across these files and generate a single
object file as output. This file is similar to what would have been obtained by separately
compiling the files and linking the resulting objects together.

− The method described above often requires changes in makefiles and somewhat differ-
ent handling. Therefore vbcc also provides means to generate some kind of special
pseudo object files which pretain enough high-level information to perform aggressive
optimizations at link time.

If -wpo is specified (which will automatically be done by vc at higher optimization
levels) vbcc will generate such files rather than normal assembly or object files. These
files can not be handled by normal linkers. However, vc will detect these files and
before linking it will pass all such files to vbcc again. vbcc will optimize the entire
code and generate real code which is then passed to the linker.

It is possible to pass vc a mixture of real and pseudo object files. vc will detect the
pseudo objects, compile them and link them together with the real objects. Obviously,
vc has to be used for linking. Directly calling the linker with pseudo objects will not
work.

Please note that optimization and code generation is deferred to link-time. Therefore,
all compiler options related to optimization and code generation have to be specified
at the linker command as well. Otherwise they would be ignored. Other options (e.g.
setting paths or defining macros) have to be specified when compiling.

Also, turn-around times will obviously increase as usually everything will be rebuild
even if makefiles are used. While only the corresponding pseudo object may be rebuilt
if one file is changed, all the real work will be done at the linking stage.

3.4.17 Instruction Scheduling

Some backends provide an instruction scheduler which is automatically run by vc at higher
optimization levels. The purpose is to reorder instructions to make better use of the different
pipelines a CPU may offer.

The exact details depend heavily on the backend, but in general the scheduler will try to
place instructions which can be executed in parallel (e.g. on super-scalar architectures)
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close to each other. Also, instructions which depend on the result of another instruction
will be moved further apart to avoid pipeline-stalls.

Please note that it may be crucial to specify the correct derivate of a CPU family in order to
get best results from the sceduler. Different variants of an architecture may have a different
number and behaviour of pipelines requiring different scheduling decisions.

Consult the backend documentation for details.

3.4.18 Target-Specific Optimizations

In addition to those optimzations which are available for all targets, every backend will
provide a series of additional optimizations. These vary between the different backends,
but optimizations frequently done by backends are:

− use of complex or auto-increment addressing-modes

− implicit setting of condition-codes

− instruction-combining

− delayed popping of stack-slots

− optimized function entry- and exit-code

− elimination of a frame pointer

− optimized multiplication/division by constants

− inline code for block-copying

3.4.19 Debugging Optimized Code

Debugging of optimized code is usually not possible without problems. Many compilers
turn off almost all optimizations when debugging. vbcc allows debugging output together
with optimizations and tries to still do all optimizations (some restrictions have to be made
regarding instruction-scheduling).

However, depending on the debugger and debugging-format used, the information displayed
in the debugger may differ from the real situation. Typical problems are:

− Incorrectly displayed values of variables.

When optimizing vbcc will often remove certain variables or eliminate code which sets
them. Sometimes it is possible, to tell the debugger that a variable has been optimized
away, but most of the time the debugger does not allow this and you will just get bogus
values when trying to inspect a variable.

Also, variables whose locations differs at various locations of the program (e.g. a
variable is in a register at one place and in memory at another) can only be correctly
displayed, if the debugger supports this.

Sometimes, this can even occur in non-optimized code (e.g. with register-parameters
or a changing stack-pointer).

− Strange program flow.

When stepping through a program, you may see lines of code be executed out-of-order
or parts of the code skipped. This often occurs due to code being moved around or
eliminated/combined.
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− Missed break-points.

Setting break-points (especially on source-lines) needs some care when optimized code
is debugged. E.g. code may have been moved or even replicated at different parts.
A break-point set in a debugger will usually only be set on one instance of the code.
Therefore, a different instance of the code may have been executed although the break-
point was not hit.

3.5 Extensions

This section lists and describes all extensions to the C language provided by vbcc. Most
of them are implemented in a way which does not break correct C code and still allows all
diagnostics required by the C standard by using reserved identifiers.

The only exception (see Section 3.5.3 [Inline-Assembly Functions], page 33) can be turned
off using -iso or -ansi.

3.5.1 Pragmas

vbcc accepts the following #pragma-directives:

#pragma printflike <function>

#pragma scanflike <function>

vbcc will handle <function> specially. <function> has to be an already de-
clared function, with external linkage, that takes a variable number of argu-
ments and a const char * as the last fixed parameter.

If such a function is called with a string-constant as format-string, vbcc will
check if the arguments seem to match the format-specifiers in the format-string,
according to the rules of printf or scanf. Also, vbcc will replace the call by a
call to a simplified version according to the following rules, if such a function
has been declared with external linkage:

− If no format-specifiers are used at all, __v0<function> will be called.

− If no qualifiers are used and only d,i,x,X,o,s,c are used,
__v1<function> will be called.

− If no floating-point arguments are used, __v2<function> will be called.

#pragma dontwarn <n>

Disables warning number n. Must be followed by #pragma popwarn.

#pragma warn <n>

Enables warning number n. Must be followed by #pragma popwarn.

#pragma popwarn

Undoes the last modification done by #pragma warn or #pragma dontwarn.

#pragma only-inline on

The following functions will be parsed and are available for inlining (see
Section 3.4.11 [Function Inlining], page 25), but no out-of-line code will be
generated, even if some calls could not be inlined.

Do not use this with functions that have local static variables!

#pragma only-inline off

The following functions are translated as usual again.
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#pragma opt <n>

Sets the optimization options to <n> (similar to -O=<n>) for the following
functions. This is only used for debugging purposes. Do not use!

#pragma begin_header

Used to mark the beginning of a system-header. Must be followed by #pragma

end_header. Not for use in applications!

#pragma end_header

The counterpart to #pragma begin_header. Marks the end of a system-header.
Not for use in applications!

3.5.2 Register Parameters

If the parameters for certain functions should be passed in certain registers, it is possible
to specify the registers using __reg("<reg>") in the prototype, e.g.

void f(__reg("d0") int x, __reg("a0") char *y) { ... }

The names of the available registers depend on the backend and will be listed in the cor-
responding part of the documentation. Note that a matching prototype must be in scope
when calling such a function - otherwise wrong code will be generated. Therefore it is not
useful to use register parameters in an old-style function-definition.

If the backend cannot handle the specified register for a certain type, this will cause an error.
Note that this may happen although the register could store that type, if the backend does
not provide the necessary support.

Also note that this may force vbcc to create worse code.

3.5.3 Inline-Assembly Functions

Only use them if you know what you are doing!

A function-declaration may be followed by ’=’ and a string-constant. If a function is called
with such a declaration in scope, no function-call will be generated but the string-constant
will be inserted in the assembly-output. Otherwise the compiler and optimizer will treat
this like a function-call, i.e. the inline-assembly must not modify any callee-save registers
without restoring them. However, it is also possible to specify the side-effects of inline-
assembly functions like registers used or variables used and modified (see Section 3.5.9
[Specifying side-effects], page 35).

Example:

double sin(__reg("fp0") double) = "\tfsin.x\tfp0\n";

There are several issues to take care of when writing inline-assembly.

− As inline-assembly is subject to loop unrolling or function inlining it may be replicated
at different locations. Unless it is absolutely known that this will not happen, the code
should not define any labels (e.g. for branches). Use offsets instead.

− If a backend provides an instruction scheduler, inline-assembly code will also be sched-
uled. Some schedulers make assumptions about their input (usually compiler-generated
code) to improve the code. Have a look at the backend documentation to see if there
are any issues to consider.
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− If a backend provides a peephole optimizer which optimizes the assembly output, inline-
assembly code will also be optimized unless -no-inline-peephole is specified. Have
a look at the backend documentation to see if there are any issues to consider.

− vbcc assumes that inline-assembly does not introduce any new control-flow edges. I.e.
control will only enter inline-assembly if the function call is reached and if control leaves
inline-assembly it will continue after the call.

Inline-assembly-functions are not recognized when ANSI/ISO mode is turned on.

3.5.4 Variable Attributes

vbcc offers attributes to variables or functions. These attributes can be specified at the
declaration of a variable or function and are syntactically similar to storage-class-specifiers
(e.g. static).

Often, these attributes are specific to one backend and will be documented in the backend-
documentation (typical attributes would e.g. be __interrupt or __section). Attributes
may also have parameters. A generally available attribute s __entry which is used to
preserve unreferenced objects and functions (see Section 3.4.13 [Unused Object Elimination],
page 27):

__entry __interrupt __section("vectab") void my_handler()

Additional non-target-specific attributes are available to specify side-effects of functions (see
Section 3.5.9 [Specifying side-effects], page 35).

Please note that some common extensions like __far are variable attributes on some ar-
chitectures, but actually type attributes (see Section 3.5.5 [Type Attributes], page 34) on
others. This is due to significantly different meanings on different architectures.

3.5.5 Type Attributes

Types may be qualified by additional attributes, e.g. __far, on some backends. Regarding
the availability of type attributes please consult the backend documentation.

Syntactically type attributes have to be placed like a type-qualifier (e.g. const). As exam-
ple, some backends know the attribute __far.

Declaration of a pointer to a far-qualified character would be

__far char *p;

whereas

char * __far p;

is a far-qualified pointer to an unqualified char.

Please note that some common extensions like __far are type attributes on some architec-
tures, but actually variable attributes (see Section 3.5.4 [Variable Attributes], page 34) on
others. This is due to significantly different meanings on different architectures.

3.5.6 __typeof

__typeof is syntactically equivalent to sizeof, but its result is of type int and is a number
representing the type of its argument. This may be necessary for implementing stdarg.h.
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3.5.7 __alignof

__alignof is syntactically equivalent to sizeof, but its result is of type int and is the
alignment in bytes of the type of the argument. This may be necessary for implementing
stdarg.h.

3.5.8 __offsetof

__offsetof is a builtin version of the offsetof-macro as defined in the C language. The
first argument is a structure type and the second a member of the structure type. The
result will be a constant expression representing the offset of the specified member in the
structure.

3.5.9 Specifying side-effects

Only use if you know what you are doing!

When optimizing and generating code, vbcc often has to take into account side-effects of
function-calls, e.g. which registers might be modified by this function and what variables
are read or modified.

A rather imprecise way to make assumptions on side-effects is given by the ABI of a certain
system (that defines which registers have to be preserved by functions) or rules derived from
the language (e.g. local variables whose address has not been taken cannot be accessed by
another function).

On higher optimization levels (see Section 3.4.15 [Inter-Procedural Analysis], page 29 and
see Section 3.4.16 [Cross-Module Optimizations], page 30)) vbcc will try to analyse functions
and often gets much more precise informations regarding side-effects.

However, if the source code of functions is not visible to vbcc, e.g. because the functions are
from libraries or they are written in assembly (see Section 3.5.3 [Inline-Assembly Functions],
page 33), it is obviously not possible to analyze the code. In this case, it is possible to specify
these side-effects using the following special variable-attributes (see Section 3.5.4 [Variable
Attributes], page 34).

The __regsused(<register-list>) attribute specifies the volatile registers used or mod-
ified by a function. The register list is a list of register names (as defined in the backend-
documentation) separated by slashes and enclosed in double-quotes, e.g.

__regsused("d0/d1") int abs();

declares a function abs which only uses registers d0 and d1.

__varsmodified(<variable-list>) specifies a list of variables with external linkage which
are modified by the function. __varsused is similar, but specifies the external variables
read by the function. If a variable is read and written, both attributes have to be specified.
The variable-list ist a list of identifiers, separated by slashes and enclosed in double quotes.

The attribute __writesmem(<type>) is used to specify that the function accesses memory
using a certain type. This is necessary if the function modifies memory accessible to the
calling function which cannot be specified using __varsmodified (e.g. because it is accessed
via pointers). __readsmem is similar, but specifies memory which is read.

If one of __varsused, varsmodified, __readsmem and __writesmem is specified, all relevant
side-effects must be specified. If, for example, only __varsused("my_global") is specified,



36 vbcc manual

this implies that the function only reads my_global and does not modify any variable
accessible to the caller.

All of these attributes may be specified multiple times.

3.5.10 Automatic constructor/destructor functions

The linker vlink provides a feature to collect pointers to all functions starting with the
names _INIT or _EXIT in a prioritized array, labeled by __CTOR_LIST__ and __DTOR_LIST_

_. The C-library (vclib) calls the constructor functions before entering main() and the
destructor functions on program exit.

The format of these special function names is:

void _INIT[_<pri>][_<name>](void)

void _EXIT[_<pri>][_<name>](void)

The optional priority <pri> may be a digit between 1 and 9, where a constructor with a
priority of 1 is executed first while a destructor with a priority of 1 is executed last. <name>
is an optional name, used to differentiate functions of the same level.

3.5.10.1 Predefined macros

The following macros are defined by the compiler.

#define __VBCC__

#define __entry __vattr("entry")

#define __str(x) #x

#define __asm(x) dostatic void inline_assembly()=x;inline_assembly();while(0)

#define __regsused(x) __vattr("regused("x")")

#define __varsused(x) __vattr("varused("x")")

#define __varsmodified(x) __vattr("varchanged("x")")

#define __noreturn __vattr("noreturn()")

#define __alwaysreturn __vattr("alwaysreturn()")

#define __nosidefx __vattr("nosidefx()")

#define __stack(x) __vattr(__str(stack1(x)))

#define __stack2(x) __vattr(__str(stack2(x)))

#define __STDC_VERSION__ 199901L

__STDC_VERSION__ is defined in C99-mode only.

3.6 Known Problems

Some known target-independent problems of vbcc at the moment:

− Some exotic scope-rules are not handled correctly.

− Debugging-infos may have problems on higher optimization-levels.

− String-constants are not merged.

3.7 Credits
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4 M68k/Coldfire Backend

This chapter documents the backend for the M68k and Coldfire processor families.

4.1 Additional options

This backend provides the following additional options:

-cpu=n Generate code for cpu n (e.g. -cpu=68020), default: 68000.

-fpu=n Generate code for fpu n (e.g. -fpu=68881), default: 0.

-sd Use small data model (see below).

-sc Use small code model (see below).

-prof Insert code for profiling.

-const-in-data

By default constant data will be placed in the code section (and therefore is
accessable with faster pc-relative addressing modes). Using this option it will
be placed in the data section.

This could e.g. be useful if you want to use small data and small code, but your
code gets too big with all the constant data.

Note that on operating systems with memory protection this option will disable
write-protection of constant data.

-use-framepointer

By default automatic variables are addressed through a7 instead of a5. This
generates slightly better code, because the function entry and exit overhead is
reduced and a5 can be used as register variable etc.

However this may be a bit confusing when debugging and you can force vbcc

to use a5 as a fixed framepointer.

-no-peephole

Do not perform peephole-optimizations.

-no-delayed-popping

By default arguments of function calls are not always popped from the stack
immediately after the call, so that the arguments of several calls may be popped
at once. With this option vbcc can be forced to pop them after every function
call. This may simplify debugging and reduce the stack size needed by the
compiled program.

-gas Create output suitable for the GNU assembler.

-no-fp-return

Do not return floats and doubles in floating-point registers even if code for an
fpu is generated.

-no-mreg-return

Do not use multiple registers to return types that do not fit into a single register.
This is mainly for backwards compatibility with certain libraries.
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-hunkdebug

When creating debug-output (-g option) create Amiga debug hunks rather than
DWARF2. Does not work with -gas.

-no-intz When generating code for FPU do quick&dirty conversions from floating-point
to integer. The code may be somewhat faster but will not correctly round to
zero. Only use it if you know what you are doing.

-use-commons

Use real common symbols instead of bss symbols for non-initialized external
variables.

4.2 ABI

The current version generates assembler output for use with the vasmm68k_mot. Most
peephole optimizations are done by the assembler so vbcc only does some that the assembler
cannot make. The generated executables will probably only work with OS2.0 or higher.

With -gas assembler output suitable for the GNU assembler is generated (the version must
understand the Motorola syntax - some old ones do not). The output is only slightly
modified from the vasm-output and will therefore result in worse code on gas.

The register names provided by this backend are:

a0, a1, a2, a3, a4, a5, a6, a7

d0, d1, d2, d3, d4, d5, d6, d7

fp0, fp1, fp2, fp3, fp4, fp5, fp6, fp7

The registers a0 - a7 are supported to hold pointer types. d0 - d7 can be used for integers
types excluding long long, pointers and float if no FPU code is generated. fp0 - fp7 can
be used for all floating point types if FPU code is generated.

Additionally the following register pairs can be used for long long:

d0/d1, d2/d3, d4/d5, d6/d7

The registers d0, d1, a0, a1, fp0 and fp1 are used as scratch registers (i.e. they can be
destroyed in function calls), all other registers are preserved.

By default, all function arguments are passed on the stack.

All scalar types up to 4 bytes are returned in register d0, long long is returned in d0/d1. If
compiled for FPU, floating point values are returned in fp0 unless -no-fpreturn is specified.
Types which are 8, 12 or 16 bytes large will be returned in several registers (d0/d1/a0/a1)
unless -no-mreg-return is specified. All other types are returned by passing the function
the address of the result as a hidden argument - such a function must not be called without
a proper declaration in scope.

Objects which have been compiled with different settings must not be linked together.

a7 is used as stack pointer. If -sd is used, a4 will be used as small data pointer. If -use-
framepointer is used, a5 will be used as frame pointer. All other registers will be used by
the register allocator and can be used for register parameters.

The size of the stack frame is limited to 32KB for early members of the 68000 family prior
to 68020.

The basic data types are represented like:
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type size in bits alignment in bytes

char 8 1

short 16 2

int 32 2

long 32 2

long long 64 2

all pointers 32 2

float(fpu) 32 2 see below

double(fpu) 64 2 see below

long double(fpu) 64 2 see below

4.3 Small data

vbcc can access static data in two ways. By default all such data will be accessed with
full 32bit addresses (large data model). However there is a second way. You can set up an
address register (a4) to point into the data segment and then address data with a 16bit
offset through this register.

The advantages of the small data model are that the program will usually be smaller (be-
cause the 16bit offsets use less space and no relocation information is needed) and faster.

The disadvantages are that one address register cannot be used by the compiler and that it
can only be used if all static data occupies less than 64kb. Also object modules and libraries
that have been compiled with different data models must not be mixed (it is possible to
call functions compiled with large data model from object files compiled with small data
model, but not vice versa and only functions can be called that way - other data cannot be
accessed).

If small data is used with functions which are called from functions which have not been
compiled with vbcc or without the small data model then those functions must be declared
with the __saveds attribute or call geta4() as the first statement (do not use automatic
initializations prior to the call to geta4). Note that geta4() must not be called through a
function pointer!

4.4 Small code

In the small code model calls to external functions (i.e. from libraries or other object files)
are done with 16bit offsets through the program counter rather than with absolute 32bit
addresses.

The advantage is slightly smaller and faster code. The disadvantages are that all the code
(including library functions) must be small enough. Objects/libraries can be linked together
if they have been compiled with different code models.

4.5 CPUs

The values of -cpu=n have those effects:

n<68000 Code for the Coldfire family is generated.

n>=68000 Code for the 68k family is generated.
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n>=68020

− 32bit multiplication/division/modulo is done with the mul?.l, div?.l and
div?l.l instructions.

− tst.l ax is used.

− extb.l dx is used.

− 16/32bit offsets are used in certain addressing modes.

− link.l is used.

− Addressing modes with scaling are used.

n==68040

− 8bit constants are not copied in data registers.

− Static memory is not subject to common subexpression elimination.

4.6 FPUs

At the moment the values of -fpu=n have those effects:

n>68000 Floating point calculations are done using the FPU.

n=68040

n=68060 Instructions that have to be emulated on these FPUs will not be used; at the
moment this only includes the fintrz instruction in case of the 040.

4.7 Math

Long multiply on CPUs <68020 uses inline routines. This may increase code size a bit,
but it should be significantly faster, because function call overhead is not necessary. Long
division and modulo is handled by calls to library functions. (Some operations involving
constants (e.g. powers of two) are always implemented by more efficient inline code.)

If no FPU is specified floating point math is done using math libraries. 32bit IEEE format
is used for float and 64bit IEEE for double and long double.

If floating point math is done with the FPU floating point values are kept in registers and
therefore may have extended precision sometimes. This is not ANSI compliant but will
usually cause no harm. When floating point values are stored in memory they use the same
IEEE formats as without FPU. Return values are passed in fp0.

Note that you must not link object files together if they were not compiled with the same
-fpu settings and that a proper math library must be linked.

4.8 Target-Specific Variable Attributes

This backend offers the following variable attributes:

__saveds Load the pointer to the small data segment at function-entry. Applicable only
to functions.

__chip Place variable in chip-memory. Only applicable on AmigaOS to variables with
static storage-duration.
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__far Do not place this variable in the small-data segment in small data mode. No
effect in large data mode. Only applicable to variables with static storage-
duration.

__near Currently ignored.

__interrupt

This is used to declare interrupt-handlers. The function using this attribute
will save all registers it destroys (including scratch-registers) and return with
rte rather than rts.

__amigainterrupt

Used to write interrupt-handlers for AmigaOS. Stack-checking for a function
with this attribute will be disabled and if a value is returned in d0, the condition
codes will be set accordingly.

__section(<string-literal>)

Places the variable/function in a section named according to the argument.

4.9 Predefined Macros

This backend defines the following macros:

__M68K__

__M680x0 (Depending on the settings of -cpu, e.g. __M68020.)

__COLDFIRE

(If a Coldfire CPU is selected.)

__M68881 (If -fpu=68881 is selected.)

__M68882 (If code for another FPU is selected; -fpu=68040 or -fpu=68060 will set __

M68882.)

__INTSIZE

Is set to the size of the int type. Either 16 (vbccm68ks) or 32 (vbccm68k).

4.10 Stack

If the -stack-check option is used, every function-prologue will call the function __stack_

check with the stacksize needed by the current function on the stack. This function has to
consider its own stacksize and must restore all registers.

If the compiler is able to calculate the maximum stack-size of a function including all callees,
it will add a comment in the generated assembly-output (subject to change to labels).

4.11 Stdarg

A possible <stdarg.h> could look like this:

typedef unsigned char *va_list;

#define __va_align(type) (__alignof(type)>=4?__alignof(type):4)
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#define __va_do_align(vl,type) ((vl)=(char *)((((unsigned int)(vl))+__va_align(type)-1)/__va_align(type)*__va_align(type)))

#define __va_mem(vl,type) (__va_do_align((vl),type),(vl)+=sizeof(type),((type*)(vl))[-1])

#define va_start(ap, lastarg) ((ap)=(va_list)(&lastarg+1))

#define va_arg(vl,type) __va_mem(vl,type)

#define va_end(vl) ((vl)=0)

#define va_copy(new,old) ((new)=(old))

#endif

4.12 Known problems

− The extended precision of the FPU registers can cause problems if a program depends
on the exact precision. Most programs will not have trouble with that, but programs
which do exact comparisons with floating point types (e.g. to try to calculate the
number of significant bits) may not work as expected (especially if the optimizer was
turned on).
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5 PowerPC Backend

This chapter documents the Backend for the PowerPC processor family.

5.1 Additional options for this version

This backend provides the following additional options:

-merge-constants

Place identical floating point constants at the same memory location. This can
reduce program size.

-const-in-data

By default constant data will be placed in the .rodata section. Using this
option it will be placed in the .data section. Note that on operating systems
with memory protection this option will disable write-protection of constant
data.

-fsub-zero

Use fsub to load a floating-point-register with zero. This is faster but requires
all registers to always contain valid values (i.e. no NaNs etc.) which may not
be the case depending on startup-code, libraries etc.

-amiga-align

Do not require any alignments greater than 2 bytes. This is needed when
accessing Amiga system-structures, but can cause a performance penalty.

-elf

Do not prefix symbols with ’ ’. Prefix labels with ’.’.

-poweropen

Generate code for the PowerOpen ABI like used in AIX. This does not work
correctly yet.

-sc

Generate code for the modified PowerOpen ABI used in the StormC compiler
(aka WarpOS ABI).

-no-regnames

Do not use register names but only numbers in the assembly output. This is
necessary to avoid name-conflicts when using -elf.

-setccs

The V.4 ABI requires signalling (in a bit of the condition code register) when ar-
guments to varargs-functions are passed in floating-point registers. vbcc usually
does not make use of this and therefore does not set that bit by default. This
may lead to problems when linking objects compiled by vbcc to objects/libraries
created by other compilers and calling varargs-functions with floating-point ar-
guments. -setccs will fix this problem.

-no-peephole

Do not perform several peephole optimizations. Currently includes:
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− better use of d16(r) addressing

− use of indexed addressing modes

− use of update-flag

− use of record-flag

− use of condition-code-registers to avoid certain branches

-use-lmw

Use lmw/stmw-instructions. This can significantly reduce code-size. However
these instructions may be slower on certain PPCs.

-madd Use the fmadd/fmsub instructions for combining multiplication with
addition/subtraction in one instruction. As these instructions do not round
between the operations, they have increased precision over separate addition
and multiplication.

While this usually does no harm, it is not ISO conforming and therefore not
the default behaviour.

-eabi Use the PowerPC Embedded ABI (eabi).

-sd Place all objects in small data-sections.

-gas Create code suitable for the GNU assembler.

-no-align-args

Do not align function arguments on the stack stricter than 4 bytes. Default
with -poweropen.

-use-commons

Use real common symbols instead of bss symbols for non-initialized external
variables.

-baserel32os4

Use 32bit base-relative addressing as used by AmigaOS 4.

-baserel32mos

Use 32bit base-relative addressing as used by MorphOS.

5.2 ABI

This backend supports the following registers:

− r0 through r31 for the general purpose registers,

− f0 through f31 for the floating point registers and

− cr0 through cr7 for the condition-code registers.

Additionally, the register pairs r3/r4, r5/r6, r7/r8, r9/r10, r14/r15, r16/r17,

r18/r19, r20/r21, r22/r23, r24/r25, r26/r27, r28/r29 and r30/r31 are available.

r0, r11, r12, f0, f12 and f13 are reserved by the backend.

The current version generates assembly output for use with vasmppc or the GNU assembler.
The generated code should work on 32bit systems based on a PowerPC CPU using the V.4
ABI or the PowerPC Embedded ABI (eabi).
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The registers r0, r3-r12, f0-f13 and cr0-cr1 are used as scratch registers (i.e. they can be
destroyed in function calls), all other registers are preserved. r1 is the stack-pointer and r13
is the small-data-pointer if small-data-mode is used.

The first 8 function arguments which have integer or pointer types are passed in registers
r3 through r10 and the first 8 floating-point arguments are passed in registers f1 through
f8. All other arguments are passed on the stack.

Integers and pointers are returned in r3 (and r4 for long long), floats and doubles in f1.
All other types are returned by passing the function the address of the result as a hidden
argument - so when you call such a function without a proper declaration in scope you can
expect a crash.

The elementary data types are represented like:

type size in bits alignment in bytes (-amiga-align)

char 8 1 (1)

short 16 2 (2)

int 32 4 (2)

long 32 4 (2)

long long 64 8 (2)

all pointers 32 4 (2)

float 32 4 (2)

double 64 8 (2)

5.3 Target-specific variable-attributes

The PPC-backend offers the following variable-attributes:

__saveds Load the pointer to the small data segment at function-entry. Applicable only
to functions.

__chip Place variable in chip-memory. Only applicable on AmigaOS to variables with
static storage-duration.

__far Do not place this variable in the small-data segment in small-data-mode. No
effect in large-data-mode. Only applicable to variables with static storage-
duration.

__near Currently ignored.

__saveall

Make sure all registers are saved by this function. On lower optimization levels,
all volatile registers will be saved additionally. On higher levels, only the ones
that may be destroyed, are saved.

__interrupt

Return with en rfi-instruction rather than blr.

__section("name","attr")

Place this function/object in section "name" with attributes "attr".
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5.4 Target-specific pragmas

The PPC-backend offers the following #pragmas:

#pragma amiga-align

Set alignment like -amiga-alignment option.

#pragma natural-align

Align every type to its own size.

#pragma default-align

Set alignment according to command-line options.

5.5 Predefined Macros

This backend defines the following macros:

__PPC__

5.6 Stack

If the -stack-check option is used, every function-prologue will call the function __stack_

check with the stacksize needed by this function in register r12. This function has to
consider its own stacksize and must restore all registers.

5.7 Stdarg

A possible <stdarg.h> for V.4 ABI could look like this:

typedef struct {

int gpr;

int fpr;

char *regbase;

char *membase;

} va_list;

char *__va_start(void);

char *__va_regbase(void);

int __va_fixedgpr(void);

int __va_fixedfpr(void);

#define va_start(vl,dummy) \

( \

vl.gpr=__va_fixedgpr(), \

vl.fpr=__va_fixedfpr(), \

vl.regbase=__va_regbase(), \

vl.membase=__va_start() \

)

#define va_end(vl) ((vl).regbase=(vl).membase=0)
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#define va_copy(new,old) ((new)=(old))

#define __va_align(type) (__alignof(type)>=4?__alignof(type):4)

#define __va_do_align(vl,type) ((vl).membase=(char *)((((unsigned int)((vl).membase))+__va_align(type)-1)/__va_align(type)*__va_align(type)))

#define __va_mem(vl,type) (__va_do_align((vl),type),(vl).membase+=sizeof(type),((type*)((vl).membase))[-1])

#define va_arg(vl,type) \

( \

(__typeof(type)&127)>10? \

__va_mem((vl),type) \

: \

( \

(((__typeof(type)&127)>=6&&(__typeof(type)&127)<=8)) ? \

( \

++(vl).fpr<=8 ? \

((type*)((vl).regbase+32))[(vl).fpr-1] \

: \

__va_mem((vl),type) \

) \

: \

( \

++(vl).gpr<=8 ? \

((type*)((vl).regbase+0))[(vl).gpr-1] \

: \

__va_mem((vl),type) \

) \

) \

)

A possible <stdarg.h> for PowerOpen ABI could look like this:

typedef unsigned char *va_list;

#define __va_align(type) (4)

#define __va_do_align(vl,type) ((vl)=(char *)((((unsigned int)(vl))+__va_align(type)-1)/__va_align(type)*__va_align(type)))

#define __va_mem(vl,type) (__va_do_align((vl),type),(vl)+=sizeof(type),((type*)(vl))[-1])

#define va_start(ap, lastarg) ((ap)=(va_list)(&lastarg+1))

#define va_arg(vl,type) __va_mem(vl,type)
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#define va_end(vl) ((vl)=0)

#define va_copy(new,old) ((new)=(old))

5.8 Known problems

− composite types are put on the stack rather than passed via pointer

− indication of fp-register-args with bit 6 of cr is not done well
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6 DEC Alpha Backend

This chapter documents the Backend for the DEC Alpha processor family.

6.1 Additional options for this version

This backend provides the following additional options:

-merge-constants

Place identical floating point constants at the same memory location. This can
reduce program size and increase compilation time.

-const-in-data

By default constant data will be placed in the code section (and therefore is
accessable with faster pc-relative addressing modes). Using this option it will
be placed in the data section. Note that on operating systems with memory
protection this option will disable write-protection of constant data.

-no-builtins

Do not replace certain builtin functions by inline code. This may be useful if
you use this code generator with another frontend than vbcc. stdarg.h will not
work with -no-builtins.

-stabs Generate stabs debug infos (if -g is specified) rather than DWARF2 which is
the default. Consider this obsolete.

6.2 ABI

This backend supports the following registers:

− $0 through $31 for the general purpose registers and

− $f0 through $f31 for the floating point registers.

The current version generates assembly output for use with the GNU assembler. The
generated code should work on systems with 21064, 21066, 21164 and higher Alpha CPUs.

The registers $0-$8, $16-$28, $f0, $f1 and $f10-$f30 are used as scratch registers (i.e.
they can be destroyed in function calls), all other registers are preserved. Of course $31

and $f31 cannot be used.

The first 6 function arguments which have arithmetic or pointer types are passed in registers
$16/$f16 through $21/$f21.

Integers and pointers are returned in $0, floats and doubles in $f0. All other types are
returned by passing the function the address of the result as a hidden argument - so when
you call such a function without a proper declaration in scope you can expect a crash.

The elementary data types are represented like:

type size in bits alignment in bytes

char 8 1

short 16 2

int 32 4

long 64 8
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long long 64 8

all pointers 64 8

float 32 4

double 64 8

6.3 Predefined Macros

This backend defines the following macros:

__ALPHA__

6.4 Stdarg

A possible <stdarg.h> could look like this:

typedef struct {

char *regbase;

char *membase;

int arg;

} va_list;

char *__va_start(void);

int __va_fixargs(void);

#define va_start(vl,dummy) \

(vl.arg=__va_fixargs(),vl.regbase=__va_start(),vl.membase=vl.regbase+(6-vl.arg)*16)

#define va_end(vl) (vl.regbase=vl.membase=0)

#define __va_size(type) ((sizeof(type)+7)/8*8)

#define va_arg(vl,type) \

( \

((__typeof(type)&15)<=10&&++vl.arg<=6) ? \

( \

((__typeof(type)&15)>=6&&(__typeof(type)&15)<=8) ? \

(vl.regbase+=16,*(type *)(vl.regbase-8)) \

: \

(vl.regbase+=16,*(type *)(vl.regbase-16)) \

) \

: \

(vl.membase+=__va_size(type),*(type *)(vl.membase-__va_size(type))) \

)

6.5 Known problems

− generated code is rather poor
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− several other problems
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7 i386 Backend

This chapter documents the Backend for the Intel i386 processor family.

7.1 Additional options for this version

This backend provides the following additional options:

-longalign

Align multibyte-values on 4-byte-boundaries. Needed by some operating sys-
tems.

-elf Do not use a ’ ’-prefix in front of external identifiers. Use a ’.’-prefix for label
names.

-merge-constants

Place identical floating point constants at the same memory location. This can
reduce program size and increase compilation time.

-const-in-data

By default constant data will be placed in a read-only section. Using this
option it will be placed in the data section Note that on operating systems with
memory protection this option will disable write-protection of constant data.

-no-delayed-popping

By default arguments of function calls are not always popped from the stack
immediately after the call, so that the arguments of several calls may be popped
at once. With this option vbcc can be forced to pop them after every function
call. This may simplify debugging and very slightly reduce the stack size needed
by the compiled program.

-safe-fp Do not use the floating-point-stack for register variables. At the moment this
is necessary as vbcci386 still has problems in some cases otherwise.

7.2 ABI

This backend supports the following registers:

− %eax, %ebx, %ecx, %edx

− %esi, %edi, %ebp, %esp

(And %st(0)-%st(7) for the floating point stack but these must not bes used for register
variables because they cannot be handled like normal registers.)

The current version generates assembly output for use with the GNU assembler. The
generated code should work on systems with Intel 80386 or higher CPUs with FPU and
compatible chips.

The registers %eax, %ecx and %edx (as well as the floating point stack) are used as scratch
registers (i.e. they can be destroyed in function calls), all other registers are preserved.

All elementary types up to 4 bytes are returned in register %eax Floating point values are
returned in %st(0). All other types are returned by passing the function the address of the
result as a hidden argument - so when you call such a function without a proper declaration
in scope you can expect a crash.
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vbcc uses %eax, %ebx, %ecx, %edx, %esi, %edi, %ebp and the floating point stack for
temporary results and register variables. Local variables are created on the stack and
addressed via %esp.

The elementary data types are represented like:

type size in bits alignment in bytes (-longalign)

char 8 1 (1)

short 16 2 (4)

int 32 2 (4)

long 32 2 (4)

long long n/a n/a

all pointers 32 2 (4)

float 32 2 (4)

double 64 2 (4)

7.3 Predefined Macros

This backend defines the following macros:

__I386__

__X86__

7.4 Stdarg

A possible <stdarg.h> could look like this:

typedef unsigned char *va_list;

#define va_start(ap, lastarg) ((ap) = (va_list)(&lastarg + 1))

#define va_arg(ap, type) ((ap) += \

(sizeof(type)<sizeof(int)?sizeof(int):sizeof(type)), ((type *)(ap))[-1])

#define va_end(ap) ((ap) = 0L)

7.5 Known Problems

− generated code is rather poor

− functions which return floating-point values sometimes are broken(?)

− in some cases (scare registers) non-reentrant code is generated
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8 c16x Backend

This chapter documents the Backend for the c16x/st10 microcontroller family.

8.1 Additional options for this version

This backend provides the following additional options:

-merge-constants

Place identical floating point constants at the same memory location. This can
reduce program size and increase compilation time.

-const-in-data

By default constant data will be placed in a read-only section. Using this option
it will be placed in the data section.

-no-delayed-popping

By default arguments of function calls are not always popped from the stack
immediately after the call, so that the arguments of several calls may be popped
at once. With this option vbcc can be forced to pop them after every function
call. This may simplify debugging and very slightly reduce the stack size needed
by the compiled program.

-no-peephole

Do not perform peephole-optimizations.

-tasking Produce output for the Tasking assembler.

-mtiny Assume all functions are within one code-segment. Shorter instructions for
calling functions are used and function-pointers will be only 2 bytes long. This
results in shorter and faster code.

-mlarge All objects which are not explicitly qualified are assumed to be far (i.e. they
may be in different segments but must not cross one segment-boundary). The
default pointer size will be 4.

-mhuge All objects which are not explicitly qualified are assumed to be huge (i.e. they
may be in different segments and may cross segment-boundaries). The default
pointer size will be 4.

-int32 Do not use.

8.2 ABI

This backend supports the following registers:

− R0 through R15 for the general purpose registers

Additionally, the register pairs R2/R3, R3/R4, R4/R5, R6/R7, R7/R8, R8/R9, R12/R13,

R13/R14, and R15/R15 are available.

R1, R11 and R12 are reserved by the backend.

The current version generates assembly output for use with the vasm assembler. Option-
ally, assembly code for the Tasking assembler can be generated. The default memory
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model corresponds to the Tasking small-memory model with 16bit data-pointers and 32bit
function-pointers. However, the DPPx registers have to be set up in a way to create a linear
16bit address space (i.e. DPPx=x). The generated code should work on systems with c161,
c163, c164, c165 and c167 microcontrollers as well as ST10 derivates. Old versions like the
c166 are not supported

The registers R1-R5 and R10-R15 are used as scratch registers (i.e. they can be destroyed
in function calls), all other registers are preserved.

R0 is used as user stack pointer. Automatic variables and temporaries are put on the user
stack. Return addresses are pushed on the system stack.

The first 4 function arguments which have integer or pointer types are passed in registers
R12 through R15.

Integers and pointers are returned in R4/R5. All other types are returned by passing the
function the address of the result as a hidden argument - so when you call such a function
without a proper declaration in scope you can expect a crash.

The elementary data types are represented like:

type size in bits alignment in bytes

char 8 1

short 16 2

int 16 2

long 32 2

long long n/a n/a

near pointers 16 2

far pointers 32 2

huge pointers 32 2

float n/a n/a

double n/a n/a

8.3 Target-specific variable-attributes

The c16x-backend offers the following variable attributes:

__interrupt

Return with rfi rather than blr. MDL/MDH will be saved, however it is recom-
mended to switch to a new register bank as the gprs are not saved. Also,
DPP0-DPP3 are not saved (the compiler does not use them).

__interrupt(<vector>)

Like __interrupt, but also places a jump-instruction to the interrupt service at
the corresponding vector table address (needs support from library and linker
file).

__section(<name>)

Place this object/function in section <name>.

__rbank(<bank>)

Switch to another register-bank for this function.
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8.4 Target-specific type-attributes

The c16x-backend offers the following type attributes:

__near Object resides within the same segment.

__far Object may reside in a different segment, but does not cross a
segment-boundary.

__huge Object may reside in a different segment and may cross a segment-boundary

__section(<name>)

Place this function or object in section <name>.

__sfr(<addr>)

Used to declare a special function register at <addr>.

Example:

__sfr(0xff10) volatile unsigned int PSW;

__esfr(<addr>)

The same for extended special function registers.

__sfrbit(<addr>,<bit>)

Declare a single bit in the bit-addressable area.

Example:

__sfr(0xff10,11) volatile __bit IEN;

__esfrbit(<addr>,<bit>)

The same for the extended bit-addressable area.

8.5 Target-specific types

The c16x-backend offers the following additional types:

__bit A single bit in the bit-addressable inernal RAM-area. Only static and external
variables may use this type. It is not allowed for auto or register storage-class.
Also, arrays of bits, pointers to bits or bits within aggregates are not allowed.
Conversion of a bit to an integral type yields 0 if the bit is cleared and 1 if it is
set.. Conversion of an integral type to a bit clears the bit if the integer is equal
to 0 and sets it otherwise.

8.6 Predefined Macros

This backend defines the following macros:

__C16X__

__C167__

__ST10__
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8.7 Stack

If the -stack-check option is used, every function-prologue will call the function __stack_

check with the stacksize needed by this function in register R1. This function has to consider
its own stacksize and must restore all registers.

Only stack-checking of the user-stack is supported. Checking the system-stack is supported
by hardware.

8.8 Stdarg

A possible <stdarg.h> could look like this:

typedef char *va_list;

va_list __va_start(void);

#define __va_rounded_size(__TYPE) \

(((sizeof (__TYPE) + sizeof (int) - 1) / sizeof (int)) * sizeof (int))

#define va_start(__AP,__LA) (__AP=__va_start())

#define va_arg(__AP, __TYPE) \

(__AP = ((char *) (__AP) + __va_rounded_size (__TYPE)), \

*((__TYPE *)((__AP) - __va_rounded_size (__TYPE))))

#define va_end(__AP) ((__AP) = 0)

8.9 Known Problems

− no floating-point

− huge-pointers are sometimes derferenced as far-pointers

− addressing-modes sometimes ignore huge

− initialized data is placed in RAM, bits are not initialized

− struct-copy only works with near-pointers

− near/far-conversion assumes DPP0-DPP3 linear
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9 68hc12 Backend

This chapter documents the Backend for the 68hc12 microcontroller family.

Note that this backend is not done!

9.1 Additional options for this version

This backend provides the following additional options:

-merge-constants

Place identical floating point constants at the same memory location. This can
reduce program size and increase compilation time.

-const-in-data

By default constant data will be placed in a read-only section. Using this option
it will be placed in the data section.

-no-delayed-popping

By default arguments of function calls are not always popped from the stack
immediately after the call, so that the arguments of several calls may be popped
at once. With this option vbcc can be forced to pop them after every function
call. This may simplify debugging and very slightly reduce the stack size needed
by the compiled program.

-no-peephole

Do not perform peephole-optimizations.

-mem-cse Try to hold values loaded from memory in registers and reuse them. Due to the
small register-set of the hc12 this is disabled by default as it increases register-
pressure and tends to spill to the stack.

9.2 ABI

The current version generates assembly output for use with the GNU assembler using the
non-banked model.

This backend supports the following registers:

− d for the accumulator (also used for byte, i.e. a)

− x for index register x

− y for index register y

− sp for the stack-pointer

All registers are scratch (i.e. caller-save).

The first function arguments which has integer or pointer types is passed in the accumulator
d or the register pair d/x. The remaining arguments are passed on the stack.

Integers and pointers are returned in d or d/x. All other types are returned by passing the
function the address of the result as a hidden argument - so when you call such a function
without a proper declaration in scope you can expect a crash.

The elementary data types are represented like:
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type size in bits alignment in bytes

char 8 1

short 16 2

int 16 2

long currently not supported

near pointers 16 2

far pointers currently not supported

huge pointers currently not supported

float currently not supported

double currently not supported

9.3 Target-specific variable-attributes

The hc12-backend offers the following variable attributes:

__interrupt

Return with rfi rather than blr.

__section("name","attr")

Place this function/object in section "section" with attributes "attr".

9.4 Predefined Macros

This backend defines the following macros:

__HC12__

9.5 Stack

If the -stack-check option is used, every function-prologue will call the function __stack_

check with the stacksize needed by this function in register y. This function has to consider
its own stacksize and must restore all registers.

9.6 Stdarg

To be written...

9.7 Known Problems

− this backend is far from done...
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10 VideoCore IV Backend

This chapter documents the Backend for the VideoCore IV processor family.

The backend is in a very early stage, it is not complete, and it can not yet be considered
useful!

Also note that it is based on freely available, inofficial, and possibly incorrect information
on the target processor.

10.1 Additional options for this version

This backend provides the following additional options:

-short-double

Use native 32bit floating point for double and long double. This is much more
efficient, but not ISO C conforming.

-one-section

Put all code and data in the same section (.text).

-no-delayed-popping

By default arguments of function calls are not always popped from the stack
immediately after the call, so that the arguments of several calls may be popped
at once. With this option vbcc can be forced to pop them after every function
call. This may simplify debugging and reduce the stack size needed by the
compiled program.

-no-peephole

Disable most backend peephole optimizations. Just for testing.

-noext-regs

Do not use registers r16-r23. Just for testing.

-cond-limit=<n>

Set the limit (in number of intermediate code instructions) for the length of
code-sequences considered for conditional execution (default: 2).

10.2 ABI

This backend supports the following registers:

− r0 through r31 for the general purpose registers

Additionally, the register pairs r0/r1 r2/r3, r4/r5, r6/r7, r8/r9, r10/r11, r12/r13,

r14/r15, r16/r17, r18/r19, r20/r21, r22/r23 are available.

r14, r15, r24-r31 are currently reserved by the backend.

The current version generates assembly output for use with vasm.

The registers r0-r5 and r14-r15 are used as scratch registers (i.e. they can be destroyed in
function calls), all other registers are preserved. r25 is the stack-pointer.

The first 6 function arguments which have integer, float32 or pointer types are passed in
registers r0 through r5. All other arguments are passed on the stack.



64 vbcc manual

Integers, float32 and pointers are returned in r0. All other types are returned by passing the
function the address of the result as a hidden argument - so when you call such a function
without a proper declaration in scope you can expect a crash.

The elementary data types are represented like:

type size in bits alignment in bytes

char 8 1

short 16 2

int 32 4

long 32 4

long long 64 8 not yet supported

all pointers 32 4

float 32 4

double 64 (32) 4

long double 64 (32) 4

10.3 Target-specific variable-attributes

The vidcore-backend offers the following variable-attributes:

__section("name","attr")

Place this function/object in section "name" with attributes "attr".

10.4 Target-specific pragmas

The vidcore-backend offers the following #pragmas:

none at the moment...

10.5 Predefined Macros

This backend defines the following macros:

__VIDEOCORE__

__SHORT_DOUBLE__ (if -short-double is used)

10.6 Stdarg

stdarg-implementation is not yet fully working. One restriction is that when calling a
varargs function, the prototype must be in scope (this is ISO C conforming). Another one
is that the stdarg-macros only work as long as all fixed arguments are passed in registers.

This will be fixed in the future.

10.7 Known problems

− no support for long long

− no support for 64bit floating point

− stdarg problems mentioned above
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− suboptimal code quality

− ...





Chapter 11: Instruction Scheduler 67

11 Instruction Scheduler

vsc - scheduler for vbcc (c) in 1997-99 by Volker Barthelmann

11.1 Introduction

vsc is an instruction-scheduler which reorders the assembly output of vbcc and tries to
improve performance of the generated code by avoiding pipeline stalls etc.

Like the compiler vbcc it is split into a target independent and a target dependent part.
However there may be code-generators for vbcc which do not have a corresponding scheduler.

This document only deals with the target independent parts of vsc. Be sure to read all the
documents for your machine.

11.2 Usage

Usually vsc will be called by a frontend. However if you call it directly, it has to be done
like this:

vsc [options] input-file output-file

The following options are supported:

-quiet Do not print the copyright notice.

-debug=<n>

Set debug-level to <n>.

Note that depending on the target vbcc may insert hints into the generated code to tell
vsc what CPU to schedule for. Code scheduled for a certain CPU may run much slower on
slightly different CPUs. Therefore it is especially important to specify the correct target-
CPU when compiling.

11.3 Known problems

− works only on basic-blocks
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12 C Library

This chapter describes the C library usually provided with vbcc.

12.1 Introduction

To execute code compiled by vbcc, a library is needed. It provides basic interfaces to the
underlying operating system or hardware as well as a set of often used functions.

A big part of the library is portable across all architectures. However, some functions (e.g.
for input/output or memory allocation) are naturally dependent on the operating system
or hardware. There are several sections in this chapter dealing with different versions of the
library.

The library itself often is split into several parts. A startup-code will do useful initializations,
like setting up IO, parsing the command line or initializing variables and hardware.

The biggest part of the functions will usually be stored in one library file. The name and
format of this file depends on the conventions of the underlying system (e.g. vc.lib or
libvc.a).

Often, floating point code (if available) is stored in a different file (e.g. m.lib or libm.a).
If floating point is used in an application, it might be necessary to explicitly link with this
library (e.g. by specifying -lm).

In many cases, the include files provide special inline-code or similar optimizations. There-
fore, it is recommended to always include the corresponding include file when using a library
function. Even if it is not necessary in all cases, it may affect the quality of the generated
code.

The library implements the functions specified by ISO9899:1989 as well as a small number
of the new functions from ISO9899:1999.

12.2 Legal

Most parts of this library are public domain. However, for some systems, parts may be
under a different license. Please consult the system specific documentation. Usually, linking
against this library will not put any restrictions on the created executable unless otherwise
mentioned.

Parts of the math library (e.g. transcendental functions) are derived from Sun’s free math
library:

* ====================================================

* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

*

* Developed at SunPro, a Sun Microsystems, Inc. business.

* Permission to use, copy, modify, and distribute this

* software is freely granted, provided that this notice

* is preserved.

* ====================================================

The softfloat functions, used by some targets, are derived from John Hauser’s IEC/IEEE
Floating-point Artithmetic Package:
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This C source file is part of the SoftFloat IEC/IEEE Floating-point

Arithmetic Package, Release 2.

Written by John R. Hauser. This work was made possible in part by the

International Computer Science Institute, located at Suite 600, 1947 Center

Street, Berkeley, California 94704. Funding was partially provided by the

National Science Foundation under grant MIP-9311980. The original version

of this code was written as part of a project to build a fixed-point vector

processor in collaboration with the University of California at Berkeley,

overseen by Profs. Nelson Morgan and John Wawrzynek. More information

is available through the web page ‘http://HTTP.CS.Berkeley.EDU/~jhauser/

arithmetic/softfloat.html’.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort

has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT

TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO

PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY

AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.

Derivative works are acceptable, even for commercial purposes, so long as

(1) they include prominent notice that the work is derivative, and (2) they

include prominent notice akin to these three paragraphs for those parts of

this code that are retained.

12.3 Embedded Systems

This section describes specifics of the C library for embedded systems.

12.3.1 Startup

The startup is usually split into two parts. The first part is done by assembly code that
produces the object file lib/startup.o. This assembly code is usually provided with vbcc
and may have to be adapted to the hardware you are using. The key actions that have to
be performed by this code are:

−hardware initialization
It may be necessary to perform some hardware initialization right at the be-
ginning, e.g. to configure the memory system. This has to be modified by the
user.

−variable initializations
When running code from ROM, some memory sections have to be initialized.
Usually, the init-values of initialized variables have to be copied from ROM to
the data segment and the values of un-initialized variables have to be cleared
in the bss segment. This code is usually provided in the startup code.

−stack pointer
The stack pointer has to be set to a suitable memory area. The startup code
will set the stack pointer to the value of the pointer __stack. There is a default
stack provided in the C library which will be used unless the application defines
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its own stack using, for example, the following code (assuming that the stack
grows downwards):

#define STACKSIZE <whatever>

static long mystack[STACKSIZE/sizeof(long)];

char *__stack=((char*)mystack)+STACKSIZE;

−calling __main

After all the above initializations have been performed, the function __main()

has to be called. This function is provided by the library and performs high-
level initializations, if necessary (mainly it calls constructors created by the
linker) and will then call the user main() function. Note that the library may
not work correctly if the user main() function is called directly from the startup
code.

12.3.2 Heap

When dynamic memory management is used (e.g. by using the malloc() function), a heap
memory area is needed to allocate memory from. The malloc() function assumes that __
heapptr is a variable pointing to the beginning of the heap memory and that __heapsize
specifies the size of the heap area in bytes. The library will provide a default heap memory
area that can be replaced by adding, for example, the following file to the application:

#define HEAPSIZE <whatever>

char __heap[HEAPSIZE],*__heapptr=__heap;

size_t __heapsize=HEAPSIZE;

12.3.3 Input/Output

The standard C input/output functions are provided also for embedded systems. Read-
ing/writing to a stream will be directed to void unless the following low-level I/O-functions
are provided by the application:

int __open(const char *name,const char *mode);

void __close(int h);

size_t __read(int h,char *p,size_t l);

size_t __write(int h,const char *p,size_t l);

The __open() function receives a name and a mode string (as in the C fopen() function)
as arguments and has to return a file-descriptor if it is possible to open this file. The other
functions are equivalent to the corresponding POSIX functions.

Also, stdin, stdout and stderr can be used with the standard descriptors.

12.3.4 Floating Point

Whether floating point is supported, depends on the target architecture and chip. If it is
supported, there will usually be a math-library that has to be linked (using option -lm)
when floating point is used.
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12.3.5 Useless Functions

Of course, some of the C library functions can not be implemented reasonably on embedded
systems. These functions are contained in the library but will always return an error value.
Mainly affected are:

−locale

−time

−signal

−filesystem functions

Depending on the hardware provided by a system it is possible to implement these functions
and add them to the application. In this case, the new functions will be used rather than
the default ones returning only error values.

12.3.6 Linking/Locating

To produce ROM images (e.g. in the form of absolute ELF executables, Intel Hex files
or Motorola S-Records), the linker is called with a linker script. This script can be used
to join together different sections of the input files and locate them to suitable absolute
memory areas. Also, this linker script can be used to set symbols that may be used by the
application or the startup code, e.g. addresses of data sections, initialization values or small
data pointers.

Code or data that has to reside at special locations can be put into a special section using
the __section attribute. This section can then be placed at the desired location using the
linker script.

Usually, an example linker script will be provided. While this is often not suitable for
different chips, it may serve as a starting point.

12.4 AmigaOS/68k

This section describes specifics of the C library for AmigaOS/68k. The relevant files
are startup.o, minstart.o, vc.lib, vcs.lib, mieee.lib, mieees.lib, m881.lib,
m881s.lib, m040.lib, m040s.lib amiga.lib, amigas.lib, auto.lib and autos.lib.

Note that extra.lib is no longer part of the vbcc distribution. It was replaced by
’PosixLib’, available on Aminet dev/c/vbcc_PosixLib.lha, which has a much more com-
prehensive support for POSIX and Unix functions.

12.4.1 Startup

The startup code currently consists of a slightly modified standard Amiga startup
(startup.o). The startup code sets up some global variables and initializes stdin, stdout
and stderr. The exit code closes all open files and frees all memory. If you link with a
math library the startup/exit code will be taken from there if necessary.

12.4.2 Floating point

Note that you have to link with a math library if you want to use floating point. All math
functions, special startup code and printf/scanf functions which support floating point are
contained in the math libraries only. At the moment there are three math libraries:
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mieee.lib

This one uses the C= math libraries. The startup code will always open
MathIeeeSingBas.library, MathIeeeDoubBas.library and MathIeeeDoub-
Trans.library. Float return values are passed in d0, double return values are
passed in d0/d1. A 68000 is sufficient to use this library. You must not specify
-fpu=... when you use this library.

m881.lib This one uses direct FPU instructions and function return values are passed in
fp0. You must have a 68020 or higher and an FPU to use this library. You
also have to specify -fpu=68881. Several FPU instructions that have to be
emulated on 040/060 may be used.

m040.lib This one uses only direct FPU instructions that do not have to be emulated
on a 040/060. Other functions use the Motorola emulation routines modified
by Aki M Laukkanen. It should be used for programs compiled for 040 or 060
with FPU. Return values are passed in fp0.

Depending on the CPU/FPU selected, #including math.h will cause inline-code generated
for certain math functions.

12.4.3 Stack

An application can specify the stack-size needed by defining a variable __stack (of type
size_t) with external linkage, e.g.

size_t __stack=65536; /* 64KB stack-size */

The startup code will check whether the stack-size specified is larger than the default stack-
size (as set in the shell) and switch to a new stack of appropriate size, if necessary.

If the -stack-check option is specified when compiling, the library will check for a stack
overflow and abort the program, if the stack overflows. Note, however, that only code
compiled with this option will be checked. Calls to libraries which have not been compiled
with -stack-check or calls to OS function may cause a stack overflow which is not noticed.

Additionally, if -stack-check is used, the maximum stack-size used can be read by querying
the external variable __stack_usage.

#include <stdio.h>

extern size_t __stack_usage;

main()

{

do_program();

printf("stack used: %lu\n",(unsigned long)__stack_usage);

}

Like above, the stack used by functions not compiled using -stack-check or OS functions
is ignored.

12.4.4 Small data model

When using the small data model of the 68k series CPUs, you also have to link with ap-
propriate libraries. Most libraries documented here are also available as small data versions
(with an ’s’ attached to the file name). Exceptions are the math libraries.
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To compile and link a program using the small data model a command like

vc test.c -o test -sd -lvcs -lamigas

might be used.

12.4.5 Restrictions

The following list contains some restrictions of this version of the library:

tmpfile()

The tmpfile() function always returns an error.

clock() The clock() function always returns -1. This is correct, according to the C
standard, because on AmigaOS it is not possible to obtain the time used by the
calling process.

12.4.6 Minimal startup

If you want to write programs that use only Amiga functions and none from vc.lib you can
use minstart.o instead of startup.o and produce smaller executables.

This is only useful for people who know enough about the Amiga shared libraries, the stubs
in amiga.lib etc. If you do not know enough about those things better forget minstart at
all.

This startup code does not set up all the things needed by vc.lib, so you must not use most
of those functions (string and ctype funtions are ok, but most other functions - especially
I/O and memory handling - must not be used). exit() is supplied by minstart and can be
used.

The command line is not parsed, but passed to main() as a single string, so you can declare
main as int main(char *command) or int main(void).

Also no Amiga libraries are opened (but SysBase ist set up), so you have to define and
open DOSBase yourself if you need it. If you want to use floating point with the IEEE
libraries you have to define and open MathIeeeSingBas.library, MathIeeeDoubBas.library
and MathIeeeDoubTrans.library (in this order!) and link with mieee.lib (if compiled for
FPU this is not needed).

A hello world using minstart could look like this:

#include <proto/exec.h>

#include <proto/dos.h>

struct DosLibrary *DOSBase;

main()

{

if(DOSBase=(struct DosLibrary *)OpenLibrary("dos.library",0)){

Write(Output(),"Hello, world!\n",14);

CloseLibrary((struct Library *)DOSBase);

}

return 0;

}
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This can yield an executable of under 300 bytes when compiled with -sc -sd -O2 and linked
with minstart.o and amigas.lib (using vlink - may not work with other linkers).

12.4.7 amiga.lib

To write programs accessing AmigaOS (rather than standard C functions only), a replace-
ment for the original (copyrighted) amiga.lib is provided with vbcc. This replacement is
adapted to vbcc, does not cause collisions with some functions (e.g. sprintf) provided by
the original amiga.lib and is available in small data. It is recommended to always use this
library rather than the original version.

Additionally, there are header files (in the proto- and inline-subdirectories) which cause
inlined calls to Amiga library functions.

Specify -lamiga to link with amiga.lib.

12.4.8 auto.lib

To link with auto.lib (or the small data version autos.lib) specify the -lauto or -lautos
option to vc.

When you are calling a standard Amiga library function and do not have defined the
corresponding library base then the library base as well as code to open/close it will be
taken from auto.lib.

By default, auto.lib will try to open any library version. If you need at least a certain
version you can define and set a variable <library-base>Ver with external linkage, e.g. (on
file-scope):

int _IntuitionBaseVer = 39;

Note that your program will abort before reaching main() if one of the libraries cannot be
opened. Also note that the dos.library will be openened by the standard startup code, not by
auto.lib. This means you have to open dos.library yourself, when linking with minstart.o.

12.5 PowerUp/PPC

This section describes specifics of the C library for PowerUp/PPC. The relevant files are
startup.o, minstart.o, libvc.a, libvcs.a, libm.a, libms.a libamiga.a, libamigas.a,
libauto.a and libautos.a.

Note that libextra.a is no longer part of the vbcc distribution. It was replaced by
’PosixLib’, available on Aminet dev/c/vbcc_PosixLib.lha, which has a much more com-
prehensive support for POSIX and Unix functions.

12.5.1 Startup

The startup code startup.o sets up some global variables and initializes stdin, stdout and
stderr. The exit code closes all open files and frees all memory. If you link with a math
library the startup/exit code will be taken from there if necessary.

12.5.2 Floating point

Note that you have to link with a math library if you want to use floating point. All math
functions, special startup code and printf/scanf functions which support floating point are
contained in the math libraries only.



76 vbcc manual

The math library (libm.a) is linked against the floating point library libmoto by Motorola.

Depending on the CPU/FPU selected, #including math.h will cause inline-code generated
for certain math functions.

12.5.3 Stack

Stack-handling is similar to AmigaOS/68k (See Section 12.4.3 [amiga-stack], page 73). The
only difference is that stack-swapping cannot be done. If the default stack-size is less than
the stack-size specified with __stack the program will abort.

12.5.4 Small data model

When using the small data model of the PPC series CPUs, you also have to link with ap-
propriate libraries. Most libraries documented here are also available as small data versions
(with an ’s’ attached to the file name). Exceptions are the math libraries.

To compile and link a program using the small data model a command like

vc test.c -o test -sd -lvcs -lamigas

might be used.

12.5.5 Restrictions

The following list contains some restrictions of this version of the library:

tmpfile()

The tmpfile() function always returns an error.

clock() The clock() function always returns -1. This is correct, according to the C
standard, because on AmigaOS it is not possible to obtain the time used by the
calling process.

12.5.6 Minimal startup

The provided minimal startup code (minstart.o) is used similarly like the one for 68k (See
Section 12.4.6 [Minimal startup], page 74). Only use it if you know what you are doing.

12.5.7 libamiga.a

To write programs accessing AmigaOS (rather than standard C functions only), a replace-
ment for the original (copyrighted) amiga.lib is provided with vbcc. This replacement
(libamiga.a) automatically performs a necessary context switch to the 68k to execute
the system call. Furthermore, it is adapted to vbcc, does not cause collisions with some
functions (e.g. sprintf) provided by the original amiga.lib and is available in small data.

Specify -lamiga to link with libamiga.a.

12.5.8 libauto.a

This library corresponds to the AmigaOS/68k version (See Section 12.4.8 [auto.lib],
page 75).
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12.6 WarpOS/PPC

This section describes specifics of the C library for WarpOS/PPC. The relevant files are
startup.o, vc.lib, m.lib, amiga.lib and auto.lib.

Note that extra.lib is no longer part of the vbcc distribution. It was replaced by
’PosixLib’, available on Aminet dev/c/vbcc_PosixLib.lha, which has a much more com-
prehensive support for POSIX and Unix functions.

12.6.1 Startup

The startup code startup.o sets up some global variables and initializes stdin, stdout and
stderr. The exit code closes all open files and frees all memory. If you link with a math
library the startup/exit code will be taken from there if necessary.

12.6.2 Floating point

Note that you have to link with a math library if you want to use floating point. All math
functions, special startup code and printf/scanf functions which support floating point are
contained in the math libraries only.

The math library (m.lib) contains functions from Sun’s portable floating point library.
Additionally, there is a vbcc version of Andreas Heumann’s ppcmath.lib. These routines
are linked against Motorola’s floating point routines optimized for PowerPC and therefore
are much faster.

To make use of this library, link with ppcmath.lib before m.lib, e.g.

vc test.c -lppcmath -lm

Depending on the CPU/FPU selected, #including math.h will cause inline-code generated
for certain math functions.

12.6.3 Stack

Stack-handling is similar to AmigaOS/68k (See Section 12.4.3 [amiga-stack], page 73).

12.6.4 Restrictions

The following list contains some restrictions of this version of the library:

tmpfile()

The tmpfile() function always returns an error.

clock() The clock() function always returns -1. This is correct, according to the C
standard, because on AmigaOS it is not possible to obtain the time used by the
calling process.

12.6.5 amiga.lib

To write programs accessing AmigaOS (rather than standard C functions only), a replace-
ment for the original (copyrighted) amiga.lib is provided with vbcc. This replacement
automatically performs a necessary context switch to the 68k to execute the system call.
Furthermore, it is adapted to vbcc, does not cause collisions with some functions (e.g.
sprintf) provided by the original amiga.lib and is available in small data.

Specify -lamiga to link with amiga.lib.
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12.6.6 auto.lib

This library corresponds to the AmigaOS/68k version (See Section 12.4.8 [auto.lib],
page 75).

12.7 MorphOS/PPC

This section describes specifics of the C library for MorphOS/PPC. The relevant files are
startup.o, minstart.o, libvc.a, libvcs.a, libm.a, libms.a libamiga.a, libamigas.a,
libauto.a and libautos.a.

Note that libextra.a is no longer part of the vbcc distribution. It was replaced by
’PosixLib’, available on Aminet dev/c/vbcc_PosixLib.lha, which has a much more com-
prehensive support for POSIX and Unix functions.

12.7.1 Startup

The startup code startup.o sets up some global variables and initializes stdin, stdout and
stderr. The exit code closes all open files and frees all memory. If you link with a math
library the startup/exit code will be taken from there if necessary.

12.7.2 Floating point

Note that you have to link with a math library if you want to use floating point. All math
functions, special startup code and printf/scanf functions which support floating point are
contained in the math libraries only.

The math library (libm.a) is linked against the floating point library libmoto by Motorola.

Depending on the CPU/FPU selected, #including math.h will cause inline-code generated
for certain math functions.

12.7.3 Stack

Stack-handling is similar to AmigaOS/68k (See Section 12.4.3 [amiga-stack], page 73).

12.7.4 Small data model

When using the small data model of the PPC series CPUs, you also have to link with ap-
propriate libraries. Most libraries documented here are also available as small data versions
(with an ’s’ attached to the file name). Exceptions are the math libraries.

To compile and link a program using the small data model a command like

vc test.c -o test -sd -lvcs -lamigas

might be used.

12.7.5 Restrictions

The following list contains some restrictions of this version of the library:

tmpfile()

The tmpfile() function always returns an error.

clock() The clock() function always returns -1. This is correct, according to the C
standard, because on MorphOS it is not possible to obtain the time used by
the calling process.
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12.7.6 libamiga.a

To write programs using AmigaOS compatible functions, a replacement for the original
(copyrighted) amiga.lib is provided with vbcc. This replacement (libamiga.a) will invoke
the MorphOS 68k emulator to execute the system function. Furthermore, it is adapted to
vbcc and does not cause collisions with some functions (e.g. sprintf) and is available in
small data.

Specify -lamiga to link with libamiga.a.

12.7.7 libauto.a

This library corresponds to the AmigaOS/68k version (See Section 12.4.8 [auto.lib],
page 75).

12.8 AmigaOS4/PPC

This section describes specifics of the C library for AmigaOS4/PPC. The relevant files are
startup.o, minstart.o, libvc.a, libvcs.a, libm.a, libms.a libamiga.a, libamigas.a,
libauto.a and libautos.a.

Note that libextra.a is no longer part of the vbcc distribution. It was replaced by
’PosixLib’, available on Aminet dev/c/vbcc_PosixLib.lha, which has a much more com-
prehensive support for POSIX and Unix functions.

12.8.1 Startup

The startup code startup.o sets up some global variables and initializes stdin, stdout and
stderr. Then it runs all constructors of dynamically linked libraries, before entering the
main program. The exit code runs all destructors of dynamically linked libraries, closes all
open files and frees all memory. If you link with a math library the startup/exit code will
be taken from there if necessary.

12.8.2 Floating point

Note that you have to link with a math library if you want to use floating point. All math
functions, special startup code and printf/scanf functions which support floating point are
contained in the math libraries only.

The math library (libm.a) is linked against the floating point library libmoto by Motorola.

Depending on the CPU/FPU selected, #including math.h will cause inline-code generated
for certain math functions.

12.8.3 Stack

There is no automatic stack extension for AmigaOS 4! This should be done automatically
by the operating system.

12.8.4 Small data model

When using the small data model of the PPC series CPUs, you also have to link with ap-
propriate libraries. Most libraries documented here are also available as small data versions
(with an ’s’ attached to the file name). Exceptions are the math libraries.

To compile and link a program using the small data model a command like
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vc test.c -o test -sd -lvcs -lamigas

might be used.

12.8.5 Dynamic linking

Since elf.library V52.2 AmigaOS4 supports dynamic linking with shared object files
(.so extension), similar to Unix. The default behaviour is to prefer linking against a shared
object over a static library. To force static linking you might want to give the -static

option to the vc frontend.

12.8.6 Restrictions

The following list contains some restrictions of this version of the library:

tmpfile()

The tmpfile() function always returns an error.

clock() The clock() function always returns -1. This is correct, according to the C
standard, because on AmigaOS it is not possible to obtain the time used by the
calling process.

Small data in dynamically linked executables

There is a bug in elf.library V52.4 (and earlier), which doesn’t load .sdata

and .sbss as a contiguous block into memory, when the executable requires
dynamic linking. I decided against writing a workaround, as the bug should be
fixed in OS4.

12.8.7 libamiga.a

In contrast to other amigalibs the OS4 libamiga.a doesn’t contain any stubs for calling
system functions. AmigaOS 4 system calls are done through special macros in the SDK’s
interface header files.

The library only includes some remaining amigalib functions, not already integrated into
the OS, like CreateIO(), but its use is discouraged.

Specify -lamiga to link with libamiga.a.

12.8.8 libauto.a

Auto-open -close functions for the following libraries are included:

Asl, CyberGfx, DataTypes, Dos, GadTools, Graphics, Icon, IFFParse, Intuition,

Locale, LowLevel, Picasso96, BSDSocket, Utility, Workbench

Note that gcc’s libauto.a doesn’t include CyberGfx.

12.8.9 newlib

12.8.9.1 Introduction

newlib.library is a shared AmigaOS4 library, which is covered by several BSD like licenses,
and includes standard ANSI and POSIX functions as well as some functions common in
Unix, BSD and similar operating systems. It is part of the OS4 SDK.

The config file newlib will be created on installation to use the paths for header files and
libraries pointing to the newlib from the SDK.
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What are the main differences between vclib and newlib?

− vclib contains (almost) only standard ANSI functions. If you want to port Unix pro-
grams you will probably miss a lot of functions. Also newlib supports things like
mapping Unix directory paths to Amiga paths or expanding wildcards in command
lines automatically.

− Programs compiled for newlib will be shorter because the code for all functions is not
contained in the executable itself.

− Programs compiled for newlib will need the shared object libc.so present when
started.

− Programs compiled for newlib will probably need more memory because the entire
(rather large) libc.so will be loaded into memory. With vclib only the functions your
program uses will be in ram. However if you have several programs using newlib at the
same time only one copy of libc.so should be loaded.

Things you should note:

− With newlib you do not need extra math-libraries.

− You must link with a vbcc-specific startup.o from the newlib lib/ directory as startup
code. The config-file newlib will usually take care of this.

− You must use the newlib-includes from the SDK rather than the ones which are for
vc.lib. The config-file newlib will usually take care of this.

12.8.9.2 Usage

To compile a program to use newlib for OS4 you must make sure the proper config-file
(newlib) is used, e.g.

vc +newlib hello.c

With a new SDK this will usually generate a dynamically linked executable, which requires
libc.so. To force a statically linked executable:

vc +newlib -static hello.c

12.9 Atari TOS/MiNT

This section describes specifics of the C library for Atari TOS and MiNT. M680x0 processors
are supported by the target m68k-atari, while ColdFire processors are supported by the
target cf-atari. Both share the same startup-code and are based on common library
sources and header files. Executables linked with this C library run on plain TOS as well
as on MiNT, without modifications.

The relevant files are startup.o, minstart.o, libvc.a, libvc16.a, libm.a, libm16.a.

The following config files are available:

tos M68k 32-bit int

tos16 M68k 16-bit int

toscf ColdFire 32-bit int
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12.9.1 Startup

The startup code startup.o sets up some global variables and initializes stdin, stdout and
stderr and returns the unneeded memory to the system. The exit code closes all open files
and frees all memory.

12.9.2 Floating point

Note that you have to link with a math library if you want to use floating point. All math
functions, special startup code and printf/scanf functions which support floating point are
contained in the math libraries only.

At the moment (libm.a) is a soft-float library, which is compatible with all the Atari models
without an FPU. There may be real FPU support in future updates.

12.9.3 Stack

The default stack size is 64k. There is a MiNT tool called stack which can adjust the stack
size of an executable to any value, by looking for a symbol named __stksize (defined by
vclib’s startup code).

Additionally the required stack size can be specified by defining a variable __stack (of type
size_t) with external linkage, as in other vbcc targets.

12.9.4 16-bit integer model

The default libraries use 32-bit int types, but you may want to use 16-bit int types for
compatibility reasons. In this case you have to specify the config file tos16 and link with
the appropriate 16-bit libraries (which have a ’16’ attached to their name).

To compile and link a program using 16-bit integers a command like

vc +tos16 test.c -o test -lm16 -lvc16

may be used. There are no 16-bit versions for ColdFire targets, because this is strictly a
32-bit CPU.

12.9.5 Restrictions

The following list contains some restrictions of this version of the library:

tmpfile()

The tmpfile() function always returns an error.

clock() The clock() function always returns -1. This is correct, according to the C
standard, because neither under TOS nor under MiNT it is possible to obtain
the time used by the calling process.

12.10 VideoCore/Linux

This section describes specifics of the C library for VideoCore under Linux.

The relevant files are vcload, startup.o, libvc.a, libm.a, libms.a.

The config file vc4-linux is part of the library.
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12.10.1 Startup

The startup code startup.o sets up stack and heap and provides a function __armcall()

to transfer control to the loader on the ARM side. The startup process calls constructors
to set up some global variables and initialize stdin, stdout and stderr if needed.

12.10.2 Floating point

Note that you have to link with a math library if you want to use floating point operations
that are not natively implemented. All math functions, special startup code and printf/scanf
functions which support floating point are contained in the math libraries only.

12.10.3 Stack

The library contains a default stack of 32KB. If another size is needed, you can add the
following to your project:

.align 4

.space <desired-size, suitably aligned>

___stackend:

.global ___stackend

12.10.4 Heap

Currently, a global variable of 16KB is used to get memory for malloc() etc. If another size
is needed, you can add the following to your project:

#define HEAPSIZE <desired size>

char __heap[HEAPSIZE],*__heapptr=__heap;

size_t __heapsize=HEAPSIZE;

Note that this mechanism will likely be changed in the future!

12.10.5 System Calls

To access system functions from the VideoCore-side, the function __armcall() can be used.
It will save the current context and return to the loader. Registers r0-r5 (the function
arguments) will be saved and are available to the loader. The loader can then execute the
system call and resume execution, passing the return value of the system function.

Resuming is done by calling the image with offset 2.

This functionality can also be used for debugging purposes.

12.10.6 Loader

A loader is required to execute VideoCore code from the ARM side. For standalone Video-
Core code, the provided loader can be used. Usually, it will be necessary to adapt the loader
to communicate between ARM and VideoCore side during runtime.

12.10.6.1 Object Format

Currently, the loader loads an simple binary image that must be pc-relative and located
to address 0x00000000. Additionally, if present, a file with extension .reltext will be
loaded for some limited relocation. This file contains a 32bit word containing the number
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of relocations followed by n 32bit words containing an offset. For each offset, the address
will be relocated to the image load address.

12.10.6.2 Command line arguments

vcload [-debug] [-cache] [-offset] <image-name>

The loader currently has the following options:

-debug

The loader will enter debug mode (see below).

-cache

The loader will set the LSB in the start address when executing code. This is
supposed to inhibit a cache flush.

Just for testing!

-offset

The loader will allocate 1 KB more memory than required and leaves this space
unused at the beginning of the allocated memory.

Just for testing!

12.10.6.3 Debug Mode

In debug mode, the loader will wait for user input before starting the VideoCore code as
well as after every __armcall.

The following commands are available:

w <addr> [<num>]

Display <num> 32bit words starting at <addr>. <addr> must be the offset into
the image. If <num> is omitted, one unit is displayed.

If one word is displayed, it is additionally displayed translated as an offset into
the image.

h <addr> [<num>]

Display <num> 16bit halfwords starting at <addr>. <addr> must be the offset
into the image. If <num> is omitted, one unit is displayed.

b <addr> [<num>]

Display <num> 8bit bytes starting at <addr>. <addr> must be the offset into
the image. If <num> is omitted, one unit is displayed.

c Start/continue execution.

q Quit.

bp <addr> Set a breakpoint at <addr>.

This is currently a very crude implementation. It will just write a branch to
__armcall() to <addr>. If everything works well, you will end in the debugger
if <addr> is reached. However, the arguments passed are random (and might be
dangerous syscalls by accident). Also, the old code at this address is currently
not restored.

As a result, you must not continue execution after hitting a breakpoint!
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12.10.7 Restrictions

The following list contains some restrictions of this version of the library:

− no real floating point support yet

− lots, lots, lots...
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13 List of Errors

0. "declaration expected" (Fatal, Error, ANSI-violation)

Something is pretty wrong with the source.

1. "only one input file allowed" (Fatal)

vbcc accepts only a single filename to compile. You can use a frontend to compile
multiple files or perhaps you mistyped an option.

2. "Flag <%s> specified more than once" ()

You specified a command line option that should be specified only once more than
once. Maybe you have this option in your config-file and used it in the command line,
too? The first occurrence will override the latter ones.

3. "Flag <%s> needs string" (Fatal)

This option hast to be specified with a string parameter, e.g. -flag=foobar

4. "Flag <%s> needs value" (Fatal)

This option hast to be specified with an integer parameter, e.g. -flag=1234

5. "Unknown Flag <%s>" (Fatal)

This option is not recognized by vbcc. Perhaps you mistyped it, used the wrong case
or specified an option of the frontend to vbcc?

6. "No input file" (Fatal)

You did not specify an input file. Your source file should not start with a ’-’ and if you
use a frontend make sure it has the proper suffix.

7. "Could not open <%s> for input" (Fatal)

A file could not be opened.

8. "need a struct or union to get a member" (Error, ANSI-violation)

The source contains something like a.b where a is not a structure or union.

9. "too many (%d) nested blocks" (Fatal, Error)

vbcc only allows a maximum number of nested blocks (compund-statements). You can
increase this number by changing the line #define MAXN <something> in vbc.h and
recompiling vbcc.

10. "left block 0" (Error, ANSI-violation)

This error should not occur.

11. "incomplete struct <%s>" (Error, ANSI-violation)

You tried to get a member of an incomplete structure/union. You defined struct x y;
somewhere without defining struct x{...}.

12. "out of memory" (Fatal, Error)

Guess what.

13. "redeclaration of struct <%s>" (Error, ANSI-violation)

You may not redeclare a struct/union in the same block.

14. "incomplete type (%s) in struct" (Error, ANSI-violation)

Every member in a struct/union declaration must be complete. Perhaps you only
wanted a pointer to that type and forgot the ’*’?
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15. "function (%s) in struct/union" (Error, ANSI-violation)

Functions cannot be members of structs/unions.

16. "redeclaration of struct/union member <%s>" (Error, ANSI-violation)

Two members of a struct/union have the same name.

17. "redeclaration of <%s>" (Error, ANSI-violation)

You used a name already in use in an enumeration.

18. "invalid constant expression" (Error, ANSI-violation)

??? Nowhere to find...

19. "array dimension must be constant integer" (Error, ANSI-violation)

The dimensions of an array must be constants (real constants, const int x=100; int
y[x]; is not allowed) and integers (int y[100.0]; is not allowed either).

20. "no declarator and no identifier in prototype" (Error, ANSI-violation)

21. "invalid storage-class in prototype" (Error, ANSI-violation)

Function parameters may only be auto or register.

22. "void not the only function argument" (Error, ANSI-violation)

You tried to declare a function that has an argument of type void as well as other
arguments.

23. "<%s> no member of struct/union" (Error, ANSI-violation)

The struct/union does not contain a member called like that.

24. "increment/decrement is only allowed for aithmetic and pointer types" (Error, ANSI-
violation)

25. "functions may not return arrays or functions" (Error, ANSI-violation)

26. "only pointers to functions can be called" (Error, ANSI-violation)

You tried to call something that did not decay into a pointer to a function.

27. "redefinition of var <%s>" (Error, ANSI-violation)

28. "redeclaration of var <%s> with new storage-class" (Error, ANSI-violation)

29. "first operand of conditional-expression must be arithmetic or pointer type" (Error,
ANSI-violation)

30. "multiple definitions of var <%s>" (Error, ANSI-violation)

There have been multiple definitions of a global variable with initialization.

31. "operands of : do not match" (Error, ANSI-violation)

In an expression of the form a ? b : c - a and b must have the same type or - a and
b both must have arithmetic types or - one of them must be a pointer and the other
must be void * or 0

32. "function definition in inner block" (Error, ANSI-violation)

C does not allow nested functions.

33. "redefinition of function <%s>" (Error, ANSI-violation)

Defining two functions with the same name in one translation-unit is no good idea.

34. "invalid storage-class for function" (Error, ANSI-violation)

Functions must not have storage-classes register or auto.
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35. "declaration-specifiers expected" (Error, ANSI-violation)

36. "declarator expected" (Error, ANSI-violation)

37. "<%s> is no parameter" (Error, ANSI-violation)

In an old-style function definition you tried to declare a name as parameter which was
not in the identifier-list.

38. "assignment of different structs/unions" (Error, ANSI-violation)

39. "invalid types for assignment" (Error, ANSI-violation)

In an assignment-context (this includes passing arguments to prototyped functions)
the source and target must be one of the following types:

- both are arithmetic types - both are the same struct/union - one of them is a pointer
to void and the other one is any pointer - the target is any pointer and the source is an
integral constant-expression with the value 0 - both are pointer to the same type (here
the target may have additional const/volatile qualifiers - not recursively, however)

Any other combinations should be illegal.

40. "only 0 can be compared against pointer" (Warning, ANSI-violation)

You may not compare a pointer against any other constant but a 0 (null pointer).

41. "pointers do not point to the same type" (Warning, ANSI-violation)

You tried to compare or assign pointers that point to different types. E.g. the types
they point to may have different attributes.

42. "function initialized" (Error, Fatal, ANSI-violation)

There was a ’=’ after a function declaration.

43. "initialization of incomplete struct" (Error, Fatal, ANSI-violation)

A structure is incomplete if the only its name, but not the content is known. You
cannot do much with such structures.

44. "initialization of incomplete union" (Error, Fatal, ANSI-violation)

A union is incomplete if the only its name, but not the content is known. You cannot
do much with such unions.

45. "empty initialization" (Error, ANSI-violation)

There was no valid expression after the ’=’ in a variable definition.

46. "initializer not a constant" (Error, ANSI-violation)

Static variables and compound types may only be initialized with constants. Variables
with const qualifier are no valid constant-expressions here.

Addresses of static variables are ok, but casting them may turn them into non-constant-
expressions.

47. "double type-specifier" (Warning, ANSI-violation)

48. "illegal type-specifier" (Warning, ANSI-violation)

49. "multiple storage-classes" (Warning, ANSI-violation)

50. "storage-class specifier should be first" (Warning, ANSI-violation)

51. "bitfields must be ints" (Warning, ANSI-violation)

52. "bitfield width must be constant integer" (Warning, ANSI-violation)
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53. "struct/union member needs identifier" (Warning, ANSI-violation)

54. "; expected" (Warning, ANSI-violation)

Probably you forgot a ’;’ or there is a syntactic error in an expression.

55. "struct/union has no members" (Warning, ANSI-violation)

You defined an empty struct or union.

56. "} expected" (Warning, ANSI-violation)

57. ", expected" (Warning, ANSI-violation)

58. "invalid unsigned" (Warning, ANSI-violation)

59. ") expected" (Warning, ANSI-violation)

60. "array dimension has sidefx (will be ignored)" (Warning, ANSI-violation)

61. "array of size 0 (set to 1)" (Warning, ANSI-violation)

ANSI C does not allow arrays or any objects to have a size of 0.

62. "] expected" (Warning, ANSI-violation)

63. "mixed identifier- and parameter-type-list" (Warning, ANSI-violation)

64. "var <%s> was never assigned a value" (Warning)

65. "var <%s> was never used" (Warning)

66. "invalid storage-class" (Warning, ANSI-violation)

67. "type defaults to int" (Warning)

68. "redeclaration of var <%s> with new type" (Warning, ANSI-violation)

69. "redeclaration of parameter <%s>" (Warning, ANSI-violation)

70. ": expected" (Warning, ANSI-violation)

71. "illegal escape-sequence in string" (Warning, ANSI-violation)

72. "character constant contains multiple chars" (Warning)

73. "could not evaluate sizeof-expression" (Error, ANSI-violation)

74. "" expected (unterminated string)" (Error, ANSI-violation)

75. "something wrong with numeric constant" (Error, ANSI-violation)

76. "identifier expected" (Fatal, Error, ANSI-violation)

77. "definition does not match previous declaration" (Warning, ANSI-violation)

78. "integer added to illegal pointer" (Warning, ANSI-violation)

79. "offset equals size of object" (Warning)

80. "offset out of object" (Warning, ANSI-violation)

81. "only 0 should be cast to pointer" (Warning)

82. "unknown identifier <%s>" (Error, ANSI-violation)

83. "too few function arguments" (Warning, ANSI-violation)

84. "division by zero (result set to 0)" (Warning, ANSI-violation)

85. "assignment of different pointers" (Warning, ANSI-violation)

86. "lvalue required for assignment" (Error, ANSI-violation)

87. "assignment to constant type" (Error, ANSI-violation)

88. "assignment to incomplete type" (Error, ANSI-violation)
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89. "operands for || and && have to be arithmetic or pointer" (Error, ANSI-violation)

90. "bitwise operations need integer operands" (Error, ANSI-violation)

91. "assignment discards const" (Warning, ANSI-violation)

You assigned something like (const type *) to (type *).

92. "relational expression needs arithmetic or pointer type" (Error, ANSI-violation)

93. "both operands of comparison must be pointers" (Error, ANSI-violation)

You wrote an expression like a == b where one operand was a pointer while the other
was not. Perhaps a function is not declared correctly or you used NULL instead of 0?

94. "operand needs arithmetic type" (Error, ANSI-violation)

95. "pointer arithmetic with void * is not possible" (Error, ANSI-violation)

Adding/subtracting from a pointer to void is not possible.

96. "pointers can only be subtracted" (Error, ANSI-violation)

You cannot add, multiply etc. two pointers.

97. "invalid types for operation <%s>" (Error, ANSI-violation)

98. "invalid operand type" (Error, ANSI-violation)

99. "integer-pointer is not allowed" (Error, ANSI-violation)

You may not subtract a pointer from an integer. Adding an integer or subtracting it
from a pointer is ok.

100. "assignment discards volatile" (Warning, ANSI-violation)

You assigned something like (volatile type *) to (type *).

101. "<<, >> and % need integer operands" (Error, ANSI-violation)

102. "casting from void is not allowed" (Error, ANSI-violation)

Casting something of type void to anything makes no sense.

103. "integer too large to fit into pointer" (Error, ANSI-violation)

You tried to assign an integer to a pointer that is too small to hold the integer. Note
that assignment of pointers<->integers is never portable.

104. "only integers can be cast to pointers" (Error, ANSI-violation)

105. "invalid cast" (Error, ANSI-violation)

106. "pointer too large to fit into integer" (Error, ANSI-violation)

You tried to assign a pointer to an integer that is too small to hold the pointer. Note
that assignment of pointers<->integers is never portable.

107. "unary operator needs arithmetic type" (Error, ANSI-violation)

108. "negation type must be arithmetic or pointer" (Error, ANSI-violation)

109. "complement operator needs integer type" (Error, ANSI-violation)

110. "pointer assignment with different qualifiers" (Warning, ANSI-violation)

You tried to assign a pointer to a pointer that points to a type with different qualifiers
(e.g. signed<->unsigned).

111. "dereferenced object is no pointer" (Error, ANSI-violation)

112. "dereferenced object is incomplete" (Error, ANSI-violation)

You tried to dereference a pointer to an incomplete object. Either you had a pointer to
an array of unknown size or a pointer to a struct or union that was not (yet) defined.
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113. "only 0 should be assigned to pointer" (Warning, ANSI-violation)

You may not assign constants other than a null pointer to any pointer.

114. "typedef <%s> is initialized" (Warning, ANSI-violation)

115. "lvalue required to take address" (Error, ANSI-violation)

You can only get the address of an object, but not of expressions etc.

116. "unknown var <%s>" (Error, ANSI-violation)

117. "address of register variables not available" (Error, ANSI-violation)

If a variable is declared as ’register’ its address may not be taken (no matter if the
variable actually gets assigned to a register).

118. "var <%s> initialized after ’extern’" (Warning)

119. "const var <%s> not initialized" (Warning)

A constant variable was not initialized in its definition. As there is no other legal way
to assign a value to a constant variable this is probable an error.

120. "function definition after ’extern’" (Warning, ANSI-violation)

121. "return type of main is not int" (Warning, ANSI-violation)

main() should be defined as

int main(int argc, char **argv)

Especially the return type of main must be ’int’ - ’void’ is not allowed by ANSI C.

122. "invalid storage-class for function parameter" (Warning, ANSI-violation)

Function parameters may only have ’auto’ or ’register’ as storage-class. ’static’ or
’extern’ are not allowed.

123. "formal parameters conflict with parameter-type-list" (Warning, ANSI-violation)

124. "parameter type defaults to int" (Warning)

A function definition contains no explicit type specifier. ’int’ will be assumed.

125. "no declaration-specifier, used int" (Warning, ANSI-violation)

A variable was declared/defined without a type specified. This is not allowed in ANSI
C (apart from functions).

126. "no declarator in prototype" (Warning, ANSI-violation)

127. "static var <%s> never defined" (Warning)

128. "} expected" (Warning)

129. "left operand of comma operator has no side-effects" (Warning)

In an expression of the form a,b a has no side-effects and is therefore superfluous.

130. "label empty" (Error, ANSI-violation)

There was a ’:’ without an identifier before it.

131. "redefinition of label <%s>" (Error, ANSI-violation)

The label was defined more than once in the same function. Consider that labels can
not be hidden in inner blocks.

132. "case without switch" (Error, ANSI-violation)

A case label was found outside of any switch-statements.
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133. "case-expression must be constant" (Error, ANSI-violation)

The expression after ’case’ must be constant.

134. "case-expression must be integer" (Error, ANSI-violation)

The expression after ’case’ must be integer.

135. "empty if-expression" (Error, ANSI-violation)

There was no valid expression after ’if’.

136. "if-expression must be arithmetic or pointer" (Error, ANSI-violation)

The expression after ’if’ must be arithmetic (i.e. an integer or floating point type) or
a pointer.

137. "empty switch-expression" (Error, ANSI-violation)

There was no valid expression after ’switch’.

138. "switch-expression must be integer" (Error, ANSI-violation)

The expression after ’switch’ must be an integer.

139. "multiple default labels" (Error, ANSI-violation)

There was more than one default label in a switch-statement.

140. "while-expression must be arithmetic or pointer" (Error, ANSI-violation)

The expression after the ’while’ must be arithmetic (i.e. an integer or floating point
type) or a pointer.

141. "empty while-expression" (Error, ANSI-violation)

There was no valid expression after ’while’.

142. "for-expression must be arithmetic or pointer" (Error, ANSI-violation)

The expression inside the ’for’ must be arithmetic (i.e. an integer or floating point
type) or a pointer.

143. "do-while–expression must be arithmetic or pointer" (Error, ANSI-violation)

The expression after the ’while’ must be arithmetic (i.e. an integer or floating point
type) or a pointer.

144. "goto without label" (Error, ANSI-violation)

’goto’ must be followed by a label.

145. "continue not within loop" (Error, ANSI-violation)

’continue’ is only allowed inside of loops. Perhaps there are unbalanced ’{’ ’}’.
146. "break not in matching construct" (Error, ANSI-violation)

’break’ is only allowed inside of loops or switch-statements. Perhaps there are unbal-
anced ’{’ ’}’.

147. "label <%s> was never defined" (Error, ANSI-violation)

There is a goto to a label that was never defined.

148. "label <%s> was never used" (Warning)

You defined a label, but there is no goto that jumps to it.

149. "register %s not ok" (Warning)

There was an internal error (i.e. a bug in the compiler)! Please report the error to
vb@compilers.de. Thanks!
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150. "default not in switch" (Warning, ANSI-violation)

A default label that is not in any switch-statement was found. Perhaps there are
unbalanced ’{’ ’}’.

151. "( expected" (Warning, ANSI-violation)

152. "loop eliminated" (Warning)

There was a loop that will never be executed (e.g. while(0)...) and therefore the entire
loop was eliminated. I do not know any reason for such loops, so there is probably an
error.

153. "statement has no effect" (Warning)

There is a statement that does not cause any side-effects (e.g. assignments, function
calls etc.) and is therefore superfluous. E.g. you might have typed a==b; instead of
a=b;

154. "’while’ expected" (Warning, ANSI-violation)

The ’while’ in a do-while loop is missing.

155. "function should not return a value" (Warning)

You specified an argument to return although the function is void. Declare the function
as non-void.

156. "function should return a value" (Warning)

You did not specify an argument to return although the function is not void. Declare
the function as void or specify a return value.

157. "{ expected" (Warning, ANSI-violation)

158. "internal error %d in line %d of file %s !!" (Fatal, Error)

There was an internal error (i.e. a bug in the compiler)! Please report the error to
vb@compilers.de. Thanks!

159. "there is no message number %d" (Fatal)

You tried to activate or suppress a message that does not exist.

160. "message number %d cannot be suppressed" (Fatal)

You cannot suppress a message that displays a real error, ANSI-violation or another
real problem. Only ’harmless’ warnings can be suppressed.

161. "implicit declaration of function <%s>" (Warning)

A function was called before it was declared and therefore implicitly declared as

int function();

This should be avoided in new programs.

162. "function call without prototype in scope" (Warning)

When writing new programs it is probably sensible to use prototypes for every function.
If a function is called without a prototype in scope this may cause incorrect type
conversions and is usually an error.

163. "#pragma used" (Warning)

Usage of #pragma should be avoided in portable programs.

164. "assignment in comparison context" (Warning)

The expression in an if-, for-, while- or do-while-statement is an assignment, e.g.
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if(i=0)...

This could an error, if you wanted if(i==0). If you turned on this warning and want
it to shut up for a certain expression you can cast it to its type, e.g.

if((int)(i=0))...

Note that only assignments with ’=’ will be warned, not ’+=’ etc.

165. "comparison redundant because operand is unsigned" (Warning)

A comparison with an unsigned variable is redundant, because the result will always
be constant, e.g.

unsigned int i; if(i<0)...

This usually is a programming error and can be avoided in all cases.

166. "cast to narrow type may cause loss of precision" (Warning)

A variable is cast to a type smaller than its original type, so that some information
may get lost. However this warning will be displayed in lots of cases where no problem
can arise, e.g. (short)(a==b).

167. "pointer cast may cause alignment problems" (Warning)

A pointer is cast to a pointer to a type with stricter alignment requirements, i.e. the
new pointer might be invalid if you do not know what you are doing. Those casts
should be avoidable in all ’usual’ cases.

168. "no declaration of global variable <%s> before definition" (Warning)

It is usually good to declare all global variables (including functions) in header files.

169. "’extern’ inside function" (Warning)

Declaration of external variables in inner blocks is usually not a good idea.

170. "dead assignment to <%s> eliminated" (Warning)

A variable is assigned a value that is never used or gets overwritten before it is used.
If this occurs in real code then there is either an errror or an unnecessary assignment.

This is detected only in optimizing compilation.

171. "var <%s> is used before defined" (Warning)

The variable is used before it was assigned a value and therefore is undefined. It cannot
be detected if the code where it is used can be reached, but if it is reached it will cause
undefined behaviour. So it is most probably an error either way (see 170).

However not all unitialized usages can be found.

Also note that the compiler may choose convenient values for uninitialized variables.
Example:

int f(int a) { int x; if(a) x=0; return(x); }
Here the optimizer may choose that x==0 if it is uninitialized and then only generate
a return(0); It can also happen that you get different values if you read an uninitialized
variable twice although it was not assigned a value inbetween.

This is only detected in optimizing compilation.

172. "would need more than %ld optimizer passes for best results" (Warning)

The optimizer would probably be able to do some further optimizations if you increased
the number of allowed passes with the -optpasses=n option.
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173. "function <%s> has no return statement" (Warning)

A non-void function has no return statement. Either this function never returns (then
better declare it as void) or it reaches end of control which would be an error.

As main() cannot be declared as void you will not be warned if main has no return
statement. If you want a warning for main, too, you can turn on warning 174.

174. "function <main> has no return statement" (Warning)

The same like 173 for main, so you can turn it on/off separately.

175. "this code is weird" (Warning)

The code has a very strange control flow. There is probably a jump inside a loop or
something similar and the optimizer will not make any loop optimization and perhaps
worse register allocation on this construct. There must be goto statements in the
source.

This warning is only detected in optimizing compilation.

176. "size of incomplete type not available" (Warning, ANSI-violation)

An incomplete type must not be the argument for sizeof.

177. "line too long" (FATAL, Error, ANSI-violation, Preprocessor)

178. "identifier must begin with a letter or underscore" (FATAL, Error, ANSI-violation,
Preprocessor)

179. "cannot redefine macro" (Error, ANSI-violation, Preprocessor)

180. "missing ) after argumentlist" (Error, ANSI-violation, Preprocessor)

181. "identifier expected" (Error, ANSI-violation, Preprocessor)

182. "illegal character in identifier" (Error, ANSI-violation, Preprocessor)

183. "missing operand before/after ##" (Error, ANSI-violation, Preprocessor)

184. "no macro-argument after #-operator" (Error, ANSI-violation, Preprocessor)

185. "macro redefinition not allowed" (Error, ANSI-violation, Preprocessor)

186. "unexpected end of file (unterminated comment)" (FATAL, Error, Preprocessor)

187. "too many nested includes" (FATAL, Error, Preprocessor)

188. "#else without #if/#ifdef/#ifndef" (FATAL, Error, ANSI-violation, Preprocessor)

189. "#else after #else" (Error, ANSI-violation, Preprocessor)

190. "#endif without #if" (Error, ANSI-violation, Preprocessor)

191. "cannot include file" (FATAL, Error, Preprocessor)

192. "expected \" or < in #include-directive" (Error, ANSI-violation, Preprocessor)

193. "unknown #-directive" (Warning, Preprocessor)

194. "wrong number of macro arguments" (Error, ANSI-violation, Preprocessor)

195. "macro argument expected" (Error, ANSI-violation, Preprocessor)

196. "out of memory" (FATAL, Error, Preprocessor)

197. "macro redefinition" (Warning, Preprocessor)

198. "/* in comment" (Warning, Preprocessor)

199. "cannot undefine macro" (Error, ANSI-violation, Preprocessor)

200. "characters after #-directive ignored" (Warning, Preprocessor)
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201. "duplicate case labels" (Warning, ANSI-violation)

Each case-label in a switch-statement must have a distinct constant value attached
(after converting it to the type of the switch-expression).

202. "var <%s> is incomplete" (Warning, ANSI-violation)

An incomplete var was defined. probably you wrote something like:

int a[];

203. "long float is no longer valid" (Warning, ANSI-violation)

’long float’ was a synonym for double in K&R C, but this is no longer allowed in ANSI
C.

204. "long double is not really supported by vbcc" (Warning)

vbcc does not know about long double yet and therefore will use it simply as a synonym
for double. This should not break any legal code, but you will not get error messages
if you e.g. assign a pointer to double to a pointer to long double.

205. "empty struct-declarations are not yet handled correct" (Warning)

obsolete

206. "identifier too long (only %d characters are significant)" (Warning)

207. "illegal initialization of var <%s>" (Warning, ANSI-violation)

Perhaps you tried to initialize a variable with external linkage in an inner block.

208. "suspicious loop" (Warning)

vbcc thinks a loop-condition looks suspicious. A possible example could be
for(i=0;i!=7;i+=2)

209. "ansi/iso-mode turned on" (Warning)

You turned on the ANSI/ISO-conforming mode. This warning is always displayed
unless it is suppressed. So vbcc cannot be blamed to miss a diagnostic for any constraint
violation. :-)

210. "division by zero (result set to 0)" (Warning, ANSI-violation)

Similar to warning 84.

211. "constant out of range" (Warning, ANSI-violation)

An integral constant is too large to fit into an unsigned long.

212. "constant is unsigned due to size" (Warning)

If an integral constant is so large that it cannot be represented as long its type is
promoted to unsigned long.

213. "varargs function called without prototype in scope" (Warning)

A function which takes a variable number of arguments must not be called without a
prototype in scope. E.g. calling printf() without #include <stdio.h> may cause this
warning.

214. "suspicious format string" (Warning)

The format-string of a printf-/scanflike function seems to be corrupt or not matching
the type of the arguments.

215. "format string contains \’\\0\’" (Warning)

The format string for a printf-/scanflike function contains an embedded ’\0’ character.
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216. "illegal use of keyword <%s>" (Warning, ANSI-violation)

The reserved keywords of C may not be used as identifier.

217. "register <%s> used with wrong type" (Error)

218. "register <%s> is not free" (Error)

219. "’ reg’ used in old-style function definition" (Warning)

220. "unknown register \"%s\"" (Warning)

221. "’...’ only allowed with prototypes" (Warning, ANSI-violation)

222. "Hey, do you really know the priority of ’&&’ vs. ’||’?" (Warning)

223. "be careful with priorities of <</>> vs. +/-" (Warning)

224. "adress of auto variable returned" (Warning)

225. "void function returns a void expression" (Warning)

226. "redeclaration of typedef <%s>" (Warning, ANSI-violation)

227. "multiple specification of attribute \"%s\"" (Warning)

228. "redeclaration of var \"%s\" with differing setting of attribute \"%s\"" (Warning)

229. "string-constant expected" (Error)

230. "tag \"%s\" used for wrong type" (Warning, ANSI-violation)

231. "member after flexible array member" (Error, ANSI-violation)

232. "illegal number" (Error, ANSI-violation)

233. "void character constant" (Preprocessor, Error, ANSI-violation)

234. "spurious tail in octal character constant" (Preprocessor, Error, ANSI-violation)

235. "spurious tail in hexadecimal character constant" (Preprocessor, Error,
ANSI-violation)

236. "illegal escape sequence in character constant" (Preprocessor, Error, ANSI-violation)

237. "invalid constant integer value" (Preprocessor, Error, ANSI-violation)

238. "a right parenthesis was expected" (Preprocessor, Error, ANSI-violation)

239. "a colon was expected" (Preprocessor, Error, ANSI-violation)

240. "truncated constant integral expression" (Preprocessor, Error, ANSI-violation)

241. "rogue operator ’%s’ in constant integral expression" (Preprocessor, Error, ANSI-
violation)

242. "invalid token in constant integral expression" (Preprocessor, Error, ANSI-violation)

243. "trailing garbage in constant integral expression" (Preprocessor, Error, ANSI-violation)

244. "void condition for a #if/#elif" (Preprocessor, Error, ANSI-violation)

245. "void condition (after expansion) for a #if/#elif" (Preprocessor, Error,
ANSI-violation)

246. "invalid ’#include’" (Preprocessor, Error, ANSI-violation)

247. "macro expansion did not produce a valid filename for #include" (Preprocessor, Error,
ANSI-violation)

248. "file ’%s’ not found" (Preprocessor, Error, ANSI-violation)

249. "not a valid number for #line" (Preprocessor, Error, ANSI-violation)
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250. "not a valid filename for #line" (Preprocessor, Error, ANSI-violation)

251. "rogue ’#’" (Preprocessor, Error, ANSI-violation)

252. "rogue #else" (Preprocessor, Error, ANSI-violation)

253. "rogue #elif" (Preprocessor, Error, ANSI-violation)

254. "unmatched #endif" (Preprocessor, Error, ANSI-violation)

255. "unknown cpp directive ’#%s’" (Preprocessor, Error, ANSI-violation)

256. "unterminated #if construction" (Preprocessor, Error, ANSI-violation)

257. "could not flush output (disk full ?)" (Preprocessor, Error, ANSI-violation)

258. "truncated token" (Preprocessor, Error, ANSI-violation)

259. "illegal character ’%c’" (Preprocessor, Error, ANSI-violation)

260. "unfinished string at end of line" (Preprocessor, Error, ANSI-violation)

261. "missing macro name" (Preprocessor, Error, ANSI-violation)

262. "trying to redefine the special macro %s" (Preprocessor, Error, ANSI-violation)

263. "truncated macro definition" (Preprocessor, Error, ANSI-violation)

264. "’...’ must end the macro argument list" (Preprocessor, Error, ANSI-violation)

265. "void macro argument" (Preprocessor, Error, ANSI-violation)

266. "missing comma in macro argument list" (Preprocessor, Error, ANSI-violation)

267. "invalid macro argument" (Preprocessor, Error, ANSI-violation)

268. "duplicate macro argument" (Preprocessor, Error, ANSI-violation)

269. "’ VA ARGS ’ is forbidden in macros with a fixed number of arguments" (Prepro-
cessor, Error, ANSI-violation)

270. "operator ’##’ may neither begin nor end a macro" (Preprocessor, Error, ANSI-
violation)

271. "operator ’#’ not followed by a macro argument" (Preprocessor, Error, ANSI-violation)

272. "macro ’%s’ redefined unidentically" (Preprocessor, Error, ANSI-violation)

273. "not enough arguments to macro" (Preprocessor, Error, ANSI-violation)

274. "unfinished macro call" (Preprocessor, Error, ANSI-violation)

275. "too many argument to macro" (Preprocessor, Error, ANSI-violation)

276. "operator ’##’ produced the invalid token ’%s%s’" (Preprocessor, Error,
ANSI-violation)

277. "quad sharp" (Preprocessor, Error, ANSI-violation)

278. "void macro name" (Preprocessor, Error, ANSI-violation)

279. "macro %s already defined" (Preprocessor, Error, ANSI-violation)

280. "trying to undef special macro %s" (Preprocessor, Error, ANSI-violation)

281. "illegal macro name for #ifdef" (Preprocessor, Error, ANSI-violation)

282. "unfinished #ifdef" (Preprocessor, Error, ANSI-violation)

283. "illegal macro name for #undef" (Preprocessor, Error, ANSI-violation)

284. "unfinished #undef" (Preprocessor, Error, ANSI-violation)

285. "illegal macro name for #ifndef" (Preprocessor, Error, ANSI-violation)
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286. "unfinished #ifndef" (Preprocessor, Error, ANSI-violation)

287. "reconstruction of <foo> in #include" (Preprocessor, Warning)

288. "comment in the middle of a cpp directive" (Preprocessor, Warning)

289. "null cpp directive" (Preprocessor, Warning)

290. "rogue ’#’ in code compiled out" (Preprocessor, Warning)

291. "rogue ’#’ dumped" (Preprocessor, Warning)

292. "#error%s" (Preprocessor, ANSI-violation, Error)

293. "trigraph ?""?%c encountered" (Preprocessor, Warning)

294. "unterminated #if construction (depth %ld)" (Preprocessor, Error, ANSI-violation)

295. "malformed identifier with UCN: ’%s’" (Preprocessor, Warning, ANSI-violation)

296. "truncated UTF-8 character" (Preprocessor, Warning, ANSI-violation)

297. "identifier not followed by whitespace in #define" (Preprocessor, Warning, ANSI-
violation)

298. "assignment discards restrict" (Warning, ANSI-violation)

299. "storage-class in declaration within for() converted to auto" (Warning, ANSI-violation)

300. "corrupted special object" (ANSI-violation, Fatal)

301. "<inline> only allowed in function declarations" (Error, ANSI-violation)

302. "reference to static variable <%s> in inline function with external linkage" (Error,
ANSI-violation)

303. "underflow of pragma popwarn" (Error, ANSI-violation)

304. "invalid argument to Pragma" (Preprocessor, Error, ANSI-violation)

305. "missing comma before ’...’" (Preprocessor, Error, ANSI-violation)

306. "padding bytes behind member <%s>" (Warning)

307. "member <%s> does not have natural alignment" (Warning)

308. "function <%s> exceeds %s limit" (Warning)

309. "%s could not be calculated for function <%s>" (Warning)

310. "offsetof applied to non-struct" (Error, ANSI-violation)

311. "trailing garbage in #ifdef" (Preprocessor, Warning, ANSI-violation)

312. "too many arguments to macro" (Preprocessor, Warning, ANSI-violation)

313. "truncated comment" (Preprocessor, Warning|ANSI-violation)

314. "trailing garbage in preprocessing directive" (Preprocessor, Warning, ANSI-violation)

315. "variable-length array must have auto storage-class" (Error, ANSI-violation)

316. "member <%s> has type with zero alignment/size (probably void)" (Error, ANSI-
violation, Fatal)

317. "stack information for target <%s> unavailable" (Warning)

318. "used registers information unavailable for target <%s>" (Warning)

319. "computed %sstack usage %d but set to %d" (Warning)

320. "unable to compute call targets" (Warning)

321. "computed register usage differs from specified one" (Warning)
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322. "trailing garbage in #include" (Preprocessor, Warning ,ANSI-violation)

323. "target-warning: %s" (Warning)

324. "target-error: %s" (Error)
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14 Backend Interface

14.1 Introduction

This chapter is under construction!

This chapter describes some of the internals of vbcc and tries to explain what has to be
done to write a code generator for vbcc. However if someone wants to write one, I suggest
to contact me first, so that it can be integrated into the source tree.

You have to create a new directory for the new target named machines/<target-name>

and write the files machine.c, machine.h and machine.dt. The compiler for this target
will be called vbcc<target-name> and can be built doing a make TARGET=<target-name>

bin/vbcc<target-name>.

From now on integer means any of char, short, int, long, long long or their unsigned
couterparts. Arithmetic means integer or float or double or long double. Elementary
type means arithmetic or pointer.

Note that this documentation may mention explicit values when introducing symbolic con-
stants. This is due to copying and pasting from the source code. These values may not be
up to date and in some cases can be overridden. Therefore do never use the absolute values
but rather the symbolic representations.

14.2 Building vbcc

This section deals with the steps necessary to build the typical vbcc executables from the
sources.

14.2.1 Directory Structure

The vbcc-directory contains the following important files and directories:

vbcc/ The main directory containing the compiler sources.

vbcc/Makefile

The Makefile used to build vbcc.

vbcc/frontend/

Directory containing the source to vc, the compiler driver.

vbcc/machines/<target>/

Directory for the <target> backend.

vbcc/machines/ucpp/

Directory containing the builtin preprocessor.

vbcc/vsc/

Directory containing source to vsc, the instruction scheduler.

vbcc/bin/

Directory the executables will be placed in.

All compiling is done from the main directory. The frontend vc is not target-dependend
and therefore only one version is created.
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Every available target has at least one subdirectory with its name in vbcc/machines and
contains at least the files machine.h, machine.c and machine.dt. Target-specific object-
files will also be stored in that directory.

The executables will be placed in vbcc/bin/. The main compiler will be called
vbcc<target>.

14.2.2 Adapting the Makefile

Before building anything you have to insert correct values for CC, NCC, LDFLAGS and
NLDFLAGS in the Makefile.

CC Here you have to insert a command that invokes an ANSI C compiler you want
to use to build vbcc. It must support -D, -I, -c and -o the same like e.g. vc or
gcc. Additional options should also be inserted here. E.g. if you are compiling
for the Amiga with vbcc you should add -DAMIGA.

LDFLAGS Here you have to add options which are necessary for linking. E.g. some
compilers need special libraries for floating-point.

NCC

NLDFLAGS These are similar to CC and LDFLAGS but they must always describe a native
compiler, i.e. Programs compiled with NCC/NLDFLAGS must be executable on
the host system. This is needed because during the build programs may have
to be executed on the host.

An example for the Amiga using vbcc would be:

CC = vc -DAMIGA -c99

LDFLAGS = -lmieee

NCC = $(CC)

NLDFLAGS = $(LDFLAGS)

An example for a typical Unix-installation would be:

CC = cc

LDFLAGS = -lm

NCC = $(CC)

NLDFLAGS = $(LDFLAGS)

The following settings are probably necessary for Open/Free/Any BSD i386 systems:

CC = gcc -D_ANSI_SOURCE

LDFLAGS = -lm

NCC = $(CC)

NLDFLAGS = $(LDFLAGS)

14.2.3 Building vc

Note to users of Open/Free/Any BSD i386 systems: You will probably have to use GNU
make instead of BSD make, i.e. in the following examples replace "make" with "gmake".

Type:

make bin/vc
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14.2.4 Building vsc

Type:

make TARGET=<target> bin/vsc<target>

For example:

make TARGET=alpha bin/vscalpha

Omit this step if there is no file machines/<target>/schedule.c.

14.2.5 Building vbcc

Type:

make TARGET=<target> bin/vbcc<target>

For example:

make TARGET=alpha bin/vbccalpha

During the build the program dtgen will be generated and executed on the host-system.
First it will ask you whether you are building a cross-compiler.

Answer y only if you are building a cross-compiler (i.e. a compiler which does not produce
code for the same machine it it running on).

Note that it does not matter if you are cross-building a compiler, i.e. if you are running
on system A and building a B->B compiler by using an A->B compiler then you can answer
n.

If you answered y you will be asked if your system/compiler offers certain datatypes. This
refers to the compiler you described with CC in the Makefile. E.g. if CC is an A->B cross-
compiler you have to answer the questions according to B. To each question answer y or
n depending if such a datatype is available on that compiler. If you answered y you have
to type in the name of that type on the compiler (e.g. signed int, unsigned char etc.).
If there are not enough datatypes available to build vbcc an error message will be printed
and the build aborts.

14.2.6 Configuring

Consult the vbcc-documentation for information on how to create the necessary config-files.

14.2.7 Building Cross-Compilers

As there is often confusion when it comes to cross-building compilers or building cross-
compilers, here is what has to be done to cross-build a B->C cross-compiler on system A
with only a native A->A compiler available.

This is done by first building an A->B compiler and then cross-building the B->C compiler
using the A->B compiler.

For the first step you use the A->A compiler for CC as well as NCC. Now you type:

make bin/vc

make TARGET=B bin/vscB # omit if there is no machines/B/schedule.c

make TARGET=B bin/vbccB

The questions about datatypes are answered according to A. Then you should write a
vc.config for the vbccB cross-compiler.
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Now create a second directory containing all the sources to vbcc and set CC/LDFLAGS to vc

using the config-file for vbccB and NCC/NLDFLAGS to the A->A compiler. Type:

make bin/vc

make TARGET=C bin/vscC # omit if there is no machines/C/schedule.c

make TARGET=C bin/vbccC

14.3 The Intermediate Code

vbcc will generate intermediate code for every function and pass this code to the code
generator which has to convert it into the desired output.

In the future there may be a code generator generator which reads a machine description
file and generates a code generator from that, but it is not clear whether this could simplify
much without taking penalties in the generated code. Anyway, this would be a layer on
top of the current interface to the code generator, so that the interface described in this
document would still be valid and accessible.

14.3.1 General Format

The intermediate code is represented as a doubly linked list of quadruples (I am calling
them ICs from now on) consisting mainly of an operator, two source operands and a target.
They are represented like this:

struct IC{

struct IC *prev;

struct IC *next;

int code;

int typf;

int typf2;

[...]

struct obj q1;

struct obj q2;

struct obj z;

[...]

struct ext_ic ext; /* optional */

};

The only members relevant to the code generator are prev, next, code, typf, typf2,

q1, q2, z and (optionally) ext_ic.

prev and next are pointers to the previous and next IC. The first IC has prev==0 and the
last one has next==0.

typf and typf2 are the type of the operands of this IC. In most ICs all operands have the
same type and therefore only typf is used. However, some ICs have operands of different
types (e.g. converting an operand to another type or adding an integer to a pointer). typf2
is used in these cases.

Macros are provided which yield the type of an operand. q1typ(), q2typ() and ztyp()

return the type of the first source operand, the second source operand and the destination,
respectively. They have to be passed a pointer to a valid IC as argument. The results are
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undefined if the IC does not contain the specified operand (e.g. q2typ() for an IC with
only a single operand).

The standard types which are defined by default are:

#define CHAR

#define SHORT

#define INT

#define LONG

#define LLONG

#define FLOAT

#define DOUBLE

#define LDOUBLE

#define VOID

#define POINTER

#define ARRAY

#define STRUCT

#define UNION

#define ENUM /* not relevant for code generator */

#define FUNKT

and can be additionally or’ed by

#define UNSIGNED

#define CONST

#define VOLATILE

#define UNCOMPLETE

However, only UNSIGNED is of real importance for the code generator. typf&NQ yields the
type without any qualifiers, typf&NU yields the type without any qualifiers but UNSIGNED.

It is possible for backends to define additional types. See Section 14.9.8 [exttypes], page 141
for documentation on how to extend the type system.

14.3.2 Operands

q1, q2 and z are the source1 (quelle1 in German), source2 and target (ziel) operands,
respectively. If a result has to be computed, it always will be stored in the object z and
the objects q1 and q2 usually may not be destroyed during this operation (unless they are
aliased with the destination).

The objects are described by this structure:

struct obj{

int flags;

int reg;

int dtyp;

struct Var *v;

struct AddressingMode *am;

union atyps{

zchar vchar;

zchar vuchar;

zshort vshort;
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zushort vushort;

zint vint;

zuint vuint;

zlong vlong;

zulong vulong;

zllong vllong;

zullong vullong;

zmax vmax;

zumax vumax;

zfloat vfloat;

zdouble vdouble;

zldouble vldouble;

} val;

};

flags specifies the kind of object. It can be a combination of

#define KONST 1

The object is a constant. Its value is in the corresponding (to typf or typf2)
member of val.

#define VAR 2

The object is a variable. The pointer to its struct Var is in v. val.vlong von-
tains an offset that has to be added to it. Fur further details, see Section 14.3.3
[Variables], page 109.

#define DREFOBJ 32

The content of the location in memory the object points to is used. dtyp

contains the type of the pointer. In systems with only one pointer type, this
will always be POINTER.

#define REG 64

The object is a register. reg contains its number.

#define VARADR 128

The address of the object is to be used. Only together with static variables (i.e.
storage_class == STATIC or EXTERN).

The possible combinations of these flags should be:

• 0 (no object)

• KONST

• KONST|DREFOBJ

• REG

• VAR

• VAR|REG

• REG|DREFOBJ

• KONST|DREFOBJ

• VAR|DREFOBJ
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• VAR|REG|DREFOBJ

• VAR|VARADR

Also some other bits which are not relevant to the code generator may be set.

Constants will usually be in q2 if possible. One of the sources always is not constant and
the target is always an lvalue. The types of the operands can be queried using the macros
q1typ(), q2typ() and ztyp(). In most cases (i.e. when not explicitly stated) the type is
an elementary type (i.e. arithmetic or pointer).

am can be used to store information on special addressing modes. This has to be han-
dled by the by the code generator. However am has to be 0 or has to point to a struct

AddressingMode that was allocated using malloc() when the code generator returns.
struct AddressingMode has to be defined in machine.h.

val stores either the value of the object if it is a constant or an offset if it is a variable.

code specifies the operation. Fur further details see Section 14.3.5 [operations], page 112.

14.3.3 Variables

A struct Var looks like:

struct Var{

int storage_class;

[...]

char *identifier;

[...]

zmax offset;

struct Typ *vtyp;

[...]

char *vattr;

unsigned long tattr; /* optional */

};

The relevant entries are:

identifier

The name of the variable. Usually only of interest for variables with external-
linkage.

storage_class

One of:

#define AUTO 1

#define REGISTER 2

#define STATIC 3

#define EXTERN 4

#define TYPEDEF 5 /* not relevant */

The backend should use the macros isauto(), isstatic() and isextern()

to check which category a variable falls into.

offset Contains an offset relative to the beginning of the variable’s storage. Used, for
example, when accessing members of structures.
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vtyp The type of the variable (see Section 14.3.4 [compositetypes], page 110).

vattr A string with attributes used in the declaration of the variable. See
Section 14.9.6 [targetattributes], page 140 for further details.

tattr Flags used when declaring the variable. See Section 14.9.6 [targetattributes],
page 140 for further details.

If the variable is not assigned to a register (i.e. bit REG is not set in the flags of the
corresponding struct obj) then the variable can be addressed in the following ways (with
examples of 68k-code):

isauto(storage_class) != 0

offset contains the offset inside the local-variables section. The code generator
must decide how it’s going to handle the activation record. If offset < 0 then
the variable is a function argument on the stack. In this case the offset in the
parameter-area is - (offset + maxalign).

The code generator may have to calculate the actual offset to a stack- or frame-
pointer from the value in offset.

offset + val.vlong(sp)

Note that storage_class == REGISTER is equivalent to AUTO - whether the
variable is actually assigned a register is specified by the bit REG in the flags

of the struct obj.

isextern(storage_class) != 0

The variable can be addressed through its name in identifier.

val.vlong + ’_’identifier

isstatic(storage_class) != 0

The variable can be addressed through a numbered label. The label number is
stored in offset.

val.vlong+’l’offset

14.3.4 Composite Types

The C language offers types which are composed out of other types, e.g. structures or
arrays. Therefore, a C type can be an arbitrarily complex structure. Usually the backend
does not need to deal with those structures. The ICs contain only the simple type flags,
e.g. INT or STRUCT, but not the members of a structure (instead the size is given).

Most backends do not have to deal with complex types at all, but there are some ways to ac-
cess them, if needed (for example, they may be needed when generating debug information).
Therefore, this chapter describes the representation of such full types.

Types are represented by the following structure:

struct Typ {

int flags;

struct Typ *next;

struct struct_declaration *exact;

zmax size;

char *attr;
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};

flags is the simple type as it is generally used in the backend. The meaning of the other
members depends on flags. attr is an attribute that can be added to the type using the
sytax __attr("...") (which is parsed like a type-qualifier, e.g. const). If several attributes
are specified for a type, the strings will be concatenated, separated by semi-colons.

If the type is a pointer (ISPOINTER(flags) != 0), then next will point to the type the
pointer points to.

If the type is an array (ISARRAY(flags) != 0), then size contains the number of elements
and next points to a type structure representing the type of each array element.

If the type is a structure (ISSTRUCT(flags) != 0), a union (ISUNION(flags) != 0) or a
function (ISFUNC(flags) != 0), then exact is a pointer to a struct_declaration (which
is also used to represent unions and function prototypes) that looks like this:

struct struct_declaration {

int count;

int label;

int typ;

...

struct struct_list (*sl)[];

char *identifier;

};

count is the number of members, label can be used to store a label when generating
debug information. typ is either STRUCT, UNION or FUNKT to denote whether it applies to a
structure, union or function-prototype.

identifier is only available for struct- and union-tags.

sl points to an array of struct struct_lists which contain information on each mem-
ber/parameter:

struct struct_list {

char *identifier;

struct Typ *styp;

zmax align;

int bfoffset;

int bfsize;

int storage_class;

int reg;

};

identifier is the identifier of the member/parameter, if available. styp denotes the full
type, align the alignment in bytes (only for struct/union), bfoffset and bfsize the size
and offset of bitfield-members, storage_class the storage class of function parameters
(may be AUTO or REGISTER) and reg denotes the register a parameter is passed in.

Example: If struct Typ *t points to a structure-type, then the type of the second structure
member can be accessed through (*t->exact->sl)[1].styp.

A prototyped function will have a last argument of type VOID unless it is a function accepting
a variable number of arguments. If a function was declared without a prototype it will have
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no parameters, a function declared with prototype accepting no arguments will have one
parameter of type VOID.

Also, in the case of a function type, the next-member of a struct Typ points to the return
type of the function.

14.3.5 Operations

This section lists all the different operations allowed in the intermediate code passed to the
backend. It lists the symbolic name of the code value (the value should not be used), a
template of the operands and a description. The description sometimes contains internals
(e.g. which types are stored in typf and which in typf2), but they should not be used.
Access them using the macros provided (e.g. q1typ,q2typ,ztyp) whenever possible.

#define ASSIGN 2

Copy q1 to z. q1->z.

q2.val.vmax contains the size of the objects (this is necessary if it is an array
or a struct). It should be accessed using the opsize()-macro. typf does not
have to be an elementary type!

The only case where typf == ARRAY should be in automatic initializations.

It is also possible that (typf&NQ) == CHAR but the size is != 1. This is created
for an inline memcpy/strcpy where the type is not known.

#define OR 16

#define XOR 17

#define AND 18

Bitwise boolean operations. q1,q2->z.

All operands are integers.

#define LSHIFT 25

#define RSHIFT 26

Bit shifting. q1,q2->z.

’q2’ is the number of shifts. All operands are integers.

#define ADD 27

#define SUB 28

#define MULT 29

#define DIV 30

Standard arithmetic operations. q1,q2->z.

All operands are of arithmetic types (integers or floating point).

#define MOD 31

Modulo (%). q1,q2->z.

All operands are integers.

#define KOMPLEMENT 33

Bitwise complement. q1->z.

All operands are integers.

#define MINUS 38

Unary minus. q1->z.
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All operands are of arithmetic types (integers or floating point).

#define ADDRESS 40

Get the address of an object. q1->z.

z is always a pointer and q1 is always an auto variable.

#define CALL 42

Call the function q1. q1.

q2.val.vmax contains the number of bytes pushed on the stack as function
arguments for this call (use the pushedargsize()-macro to access this size).
Those may have to be popped from the stack after the function returns depend-
ing on the calling mechanism.

A CALL IC has a member arg_cnt which contains the number of arguments to
this function call. arg_list[i] (with i in the range 0...arg_cnt-1) contains
the pointer to the IC passing the i-th argument.

#define CONVERT 50

Convert one type to another. q1->z.

z is always of the type typf, q1 of type typf2.

Conversions between floating point and pointers do not occur, neither do con-
versions to and from structs, unions, arrays or void.

#define ALLOCREG 65

Allocate a register. q1.

From now on the register q1.reg is in use. No code has to be generated for
this, but it is probably useful to keep track of the registers in use to know
which registers are available for the code generator at a certain time and which
registers are trashed by the function.

#define FREEREG 66

Release a register. q1.

From now on the register q1.reg is free.

Also it means that the value currently stored in q1.reg is not used any more
and provides a little bit of data flow information. Note however, if a FREEREG

follows a branch, the value of the register may be used at the target of the
branch.

#define COMPARE 77

Compare and set condition codes. q1,q2(->z).

Compare the operands and set the condition code, so that BEQ, BNE, BLT,

BGE, BLE or BGT works as desired. If z.flags == 0 (this is always the case
unless the backend sets multiple_ccs to 1 and -no-multiple-ccs is not used)
the condition codes will be evaluated only by an IC immediately following
the COMPARE, i.e. the next instruction (except possible FREEREGs) will be a
conditional branch.

However, if a target supports several condition code registers and sets the global
variable multiple_ccs to 1, vbcc might use those registers and perform certain
optimizations. In this case z may be non-empty and the condition codes have
to be stored in z.
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Note that even if multiple_ccs is set, a backend must nevertheless be able to
deal with z == 0.

#define TEST 68

Test q1 against 0 and set condition codes. q1(->z)

This is equivalent to COMPARE q1,#0 but only the condition code for BEQ and
BNE has to be set.

#define LABEL 69

Generate a label. typf specifies the number of the label.

#define BEQ 70

#define BNE 71

#define BLT 72

#define BGE 73

#define BLE 74

#define BGT 75

Branch on condition codes. (q1).

typf specifies the label where program execution shall continue, if the condition
code is true (otherwise continue with next statement). The condition codes
mean equal, not equal, less than, greater or equal, less or equal and greater
than. If q1 is empty (q1.flags == 0), the codes set by the last COMPARE or
TEST must be evaluated. Otherwise q1 contains the condition codes.

On some machines the type of operands of a comparison (e.g unsigned or signed)
is encoded in the branch instructions rather than in the comparison instruc-
tions. In this case the code generator has to keep track of the type of the last
comparison.

Similarly, in some architectures, the compare and the branch can be combined.

#define BRA 76

Branch always. typf specifies the label where program execution continues.

#define PUSH 78

Push q1 on the stack (for argument passing). q1.

q2.val.vmax contains the size of the object (should be accessed using the
opsize()-macro), z.val.vmax contains the size that has to be pushed (ac-
cess it using the pushsize()-macro). These sizes may differ due to alignment
issues.

q1 does not have to be an elementary type (see ASSIGN). Also, q1 can be empty.
This is used for ABIs which require stack-slots to be omitted.

Depending on ORDERED_PUSH the PUSH ICs are generated starting with the first
or the last arguments. The direction of the stack-growth can be chosen by
the backend. Note that this is only used for function-arguments, they can be
pushed in opposite direction of the real stack.

#define ADDI2P 81

Add an integer to a pointer. q1,q2->z.

q1 and z are always pointers (of type typf2) and q2 is an integer of type typf.
z has to be q1 increased by q2 bytes.
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#define SUBIFP 82

Subtract an Integer from a pointer. q1,q2->z.

q1 and z are always pointers (of type typf2) and q2 is an integer of type typf.
z has to be q1 decreased by q2 bytes.

#define SUBPFP 83

Subtract a pointer from a pointer. q1,q2->z.

q1 and q2 are pointers (of type typf2) and z is an integer of type typf. z has
to be q1 - q2 in bytes.

#define GETRETURN 93

Get the return value of the last function call. ->z.

If the return value is in a register, its number will be q1.reg. Otherwise q1.reg
will be 0. GETRETURN immediately follows a CALL IC (except possible FREEREGs).

#define SETRETURN 94

Set the return value of the current function. q1.

If the return value is in a register, its number will be z.reg. Otherwise z.reg

will be 0. SETRETURN is immediately followed by a function exit (i.e. it is the
last IC or followed by an unconditional branch to a label which is the last IC -
always ignoring possible FREEREGs).

#define MOVEFROMREG 95

Move a register to memory. q1->z.

q1 is always a register and z an array of size regsize[q1.reg].

#define MOVETOREG 96

Load a register from memory. q1->z.

z is always a register and q1 an array of size regsize[z.reg].

#define NOP 97

Do nothing.

14.4 Type System

14.4.1 Target Data Types

As the compiler should be portable, we must not assume anything about the data types of
the host system which is not guaranteed by ANSI/ISO C. Especially do not assume that
the data types of the host system correspond to the ones of the target system.

Therefore, vbcc will provide typedefs which can hold a data type of the target machine
and (as there is no operator overloading in C) functions or macros to perform arithmetic
on these types.

The typedefs for the basic target’s data types (they can be extended by additional types)
are:

zchar Type char on the target machine.

zuchar Type unsigned char on the target machine.

zshort Type short on the target machine.
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zushort Type unsigned short on the target machine.

zint Type int on the target machine.

zuint Type unsigned int on the target machine.

zlong Type long on the target machine.

zulong Type unsigned long on the target machine.

zllong Type long long on the target machine.

zullong Type unsigned long long on the target machine.

zmax A type capable of storing (and correctly doing arithmetic on) every signed
integer type. Defaults to zllong.

zumax A type capable of storing (and correctly doing arithmetic on) every unsigned
integer type. Defaults to zullong.

zfloat Type float on the target machine.

zdouble Type double on the target machine.

zldouble Type long double on the target machine.

zpointer A byte pointer on the target machine. Not really used.

These typedefs and arithmetic functions to work on them will be generated by the program
dtgen when compiling vbcc. It will create the files machines/$(TARGET)/dt.h and dt.c.

These files are generated from machines/$(TARGET)/machine.dt which must describe what
representations the code generator needs. dtgen will then ask for available types on the
host system and choose appropriate ones and/or install emulation functions, if available.

In machine.dt, every data type representation gets a symbol (the ones which are already
available can be looked up in datatypes/datatypes.h - new ones will be added when
necessary). The first 14 lines must contain the representations for the following types:

1. signed char

2. unsigned char

3. signed short

4. unsigned short

5. signed int

6. unsigned int

7. signed long

8. unsigned long

9. signed long long

10. unsigned long long

11. float

12. double

13. long double

14. void *
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If the code generator can use several representations, these can be added on the same line
separated by spaces. E.g. the code generator for m68k does not care if the integers are
stored big-endian or little-endian on the host system because it only accesses them through
the provided arithmetic functions. It does, however, access floats and doubles through
byte-pointers and therefore requires them to be stored in big-endian-format.

14.4.2 Target Arithmetic

Now you have a lot of functions/macros performing operations using the target machine’s
arithmetic. You can look them up in dt.h/dt.c. E.g. zmadd() takes two zmax and returns
their sum as zmadd. zumadd() does the same with zumax, zldadd() with long doubles. No
functions for smaller types are needed because you can calculate with the wider types and
convert the results down if needed.

Therefore, there are also conversion functions which convert between types of the target
machine. E.g. zm2zc takes a zmax and returns the value converted to a zchar. Again, look
at dt.h/dt.c to see which ones are there.

A few functions for converting between target and host types are also there, e.g. l2zm takes
a long and returns it converted to zmax.

At last there are functions for comparing target data types. E.g. zmleq(a,b) returns true
if zlong a <= zlong b and false otherwise. zleqto(a,b) returns true if zlong a == zlong

b and false otherwise.

14.5 machine.h

This section describes the contents of the file machine.h. Note that some optional
macros/declaration may be described someplace else in this manual.

#include "dt.h"

This should be the first statement in machine.h.

struct AddressingMode { ... };

If machine-specific addressing modes (see Section 14.8.2 [addressingmodes],
page 129) are used, an appropriate structure can be specified here. Otherwise,
just enter the following code:

struct AddressingMode {

int never_used;

};

#define MAXR <n>

Insert the number of available registers.

#define MAXGF <n>

Insert the number of command line flags that can be used to configure the
behaviour of the code generator. This must be at least one even if you do not
use any flags.

#define USEQ2ASZ <0/1>

If this is set to zero, vbcc will not generate ICs with the target operand being
the same as the 2nd source operand. This can sometimes simplify the code-
generator, but usually the code is better if the code-generator allows it.
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#define MINADDI2P <type>

Insert the smallest integer type that can be added to a pointer. Smaller types
will be automatically converted to type MINADDI2P when they are to be added
to a pointer. This may be subsumed by shortcut() in the future.

#define MAXADDI2P <type>

Insert the largest integer type that can be added to a pointer. Larger types will
be automatically converted to type MAXADDI2P when they are to be added to a
pointer. This may be subsumed by shortcut() in the future.

#define BIGENDIAN <0/1>

Insert 1 if integers are represented in big endian, i.e. the most significant byte
is at the lowest memory address, the least significant byte at the highest.

#define LITTLEENDIAN <0/1>

Insert 1 if integers are represented in little endian, i.e. the least significant byte
is at the lowest memory address, the most significant byte at the highest.

#define SWITCHSUBS <0/1>

Insert 1 if switch-statements should be compiled into a series of SUB/TEST/BEQ
instructions rather than COMPARE/BEQ. This may be useful if the target has a
more efficient SUB-instruction which sets condition codes (e.g. 68k).

#define INLINEMEMCPY <n>

Insert the largest size in bytes allowed for inline memcpy. In optimizing compi-
lation, certain library memcpy/strcpy-calls with length known at compile-time
will be inlined using an ASSIGN IC if the size is less or equal to INLINEMEMCPY.
The type used for the ASSIGN IC will be UNSIGNED|CHAR.

This may be replaced by a variable of type zmax in the future.

#define ORDERED_PUSH <0/1>

Insert 1 if PUSH ICs for function arguments shall be generated from left to right
instead right to left.

#define HAVE_REGPARMS 1

Insert this line if the backend supports register parameters (see Section 14.8.4
[regparm], page 133).

#define HAVE_REGPAIRS 1

Insert this line if the backend supports register pairs (see Section 14.8.5 [reg-
pairs], page 133).

#define HAVE_INT_SIZET 1

Insert this line if size_t shall be of type unsigned int rather than unsigned

long.

#define EMIT_BUF_LEN <n>

Insert the maximum length of a line of code output.

#define EMIT_BUF_DEPTH <n>

Insert the number of ouput lines that should be buffered. This can be useful
for peephole-optimizing the assembly output (see below).
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#define HAVE_TARGET_PEEPHOLE <0/1>

Insert 1 if the backend provides an asm_peephole() function (see
Section 14.8.14 [asmpeephole], page 136).

#define HAVE_TARGET_ATTRIBUTES 1

Insert this line if the backend provides old target-specific variable-attributes
(see Section 14.9.6 [targetattributes], page 140).

#define HAVE_TARGET_PRAGMAS 1

Insert this line if the backend provides target-specific #pragma-directives (see
Section 14.9.7 [targetpragmas], page 141).

#define HAVE_REGS_MODIFIED 1

Insert this line if the backend supports inter-procedural register-allocation (see
Section 14.8.11 [regsmodified], page 136).

#define HAVE_TARGET_RALLOC 1

Insert this line if the backend supports context-sensitive register-allocation (see
Section 14.8.10 [targetralloc], page 135).

#define HAVE_TARGET_EFF_IC 1

Insert this line if the backend provides a mark_eff_ics() function (see
Section 14.8.15 [markeffics], page 137).

#define HAVE_EXT_IC 1

Insert this line if the backend provides a struct ext_ic (see Section 14.8.13
[extic], page 136).

#define HAVE_EXT_TYPES 1

Insert this line if the backend supports additional types (see Section 14.9.8
[exttypes], page 141).

#define HAVE_TGT_PRINTVAL 1

Insert this line if the backend provides an own printval function see
Section 14.9.9 [tgtprintval], page 141).

#define JUMP_TABLE_DENSITY <float>

#define JUMP_TABLE_LENGTH <int>

These values controls the creation of jump-tables (see Section 14.8.9 [jumpta-
bles], page 134).

#define ALLOCVLA_REG <reg>

#define ALLOCVLA_INLINEASM <inline-asm>

#define FREEVLA_REG <reg>

#define FREEVLA_INLINEASM <inline-asm>

#define OLDSPVLA_INLINEASM <inline-asm>

#define FPVLA_REG <reg>

Necessary defines for C99 variable-length-arrays (see Section 14.9.14 [vlas],
page 144).

#define HAVE_LIBCALLS 1

Insert this line if the backend wants certain ICs to be replaced with calls to
library functions (see Section 14.9.15 [libcalls], page 144).
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#define AVOID_FLOAT_TO_UNSIGNED 1

#define AVOID_UNSIGNED_TO_FLOAT 1

Insert these lines to tell the frontend not to generate CONVERT ICs that con-
vert between unsigned integers and floating point. In those cases, additional
intermediate code will be generated that implements the conversion using only
signed integers.

14.6 machine.c

This is the main part of the code generator. The first statement should be #include

"supp.h" which will include all necessary declarations.

The following variables and functions must be provided by machine.c.

14.6.1 Name and Copyright

The codegenerater must define a zero-terminated character array char cg_copyright[];

containing name and copyright-notice of the code-generator.

14.6.2 Command Line Options

You can use code generator specific commandline options. The number of flags is specified
as MAXGF in machine.h. Insert the names for the flags as char *g_flags_name[MAXGF]. If
an option was specified (g_flags[i]&USEDFLAG) is not zero. In int g_flags[MAXGF] you
can choose how the options are to be used:

0 The option can only be specified. E.g. if g_flags_name[2]=="myflag", the
commandline may contain -myflag and (g_flags[2]&USEDFLAG)!=0.

VALFLAG The option must be specified with an integer constant, e.g. -myflag=1234.
This value can be found in g_flags_val[2].l.

STRINGFLAG

The option must be specified with a string, e.g. -myflag=Hallo. The pointer
to the string can be found in g_flags_val[2].p.

14.6.3 Data Types

The following variables have to be initialized to describe the representation of the data
types.

MAX_TYPE This macro contains the number of different types. In case of target-specific ex-
tended types (see Section 14.9.8 [exttypes], page 141) this is set by the backend,
otherwise the frontend will use a default.

zmax char_bit;

The number of bits in a char on the target (usually 8).

zmax align[MAX_TYPE+1];

This array must contain the necessary alignments for every type in bytes. Some
of the entries in this array are not actually used, but align[type&NQ]must yield
the correct alignment for every type. align[CHAR] must be 1.

The alignment of a structure depends not only on sizetab[STRUCT] but also
on the alignment of the members. The maximum of the alignments of all
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members and sizetab[STRUCT] is the alignment of any particular structure,
i.e. sizetab[STRUCT] is only a minimum alignment.

The same applies to unions and arrays.

zmax maxalign;

This variable must be set to an alignment in bytes that is used when pushing
arguments on the stack. (FIXME: describe stackalign)

zmax sizetab[MAX_TYPE+1];

This array must contain the sizes of every type in bytes.

zmax t_min[MAX_TYPE+1];

This array must contain the smallest representable number for every signed
integer type.

zumax t_min[MAX_TYPE+1];

This array must contain the largest representable number for every signed in-
teger type.

zumax tu_min[MAX_TYPE+1];

This array must contain the largest representable number for every unsigned
integer type.

As zmax and zumax may be no elementary types on the host machine, those arrays have to
be initialized dynamically (in init_cg()). It is recommended to use explicit typenames,
e.g. sizetab[INT]=l2zm(4L); to keep it portable and allow later extensions of the type
system.

Also note that those values may not be representable as constants by the host architecture
and have to be calculated using the functions for arithmetic on the target’s data types. E.g.
the smallest representable value of a 32bit twos-complement data type is not guaranteed to
be valid on every ANSI C implementation.

You may not use simple operators on the target data types but you have to use the functions
or convert them to an elementary type of the host machine before (if you know that it is
representable as such).

14.6.4 Register Set

The following variables have to be initialized to describe the register set of the target.

MAXR The valid registers are numbered from 1..MAXR. MAXR must be #defined in
machine.h.

char *regnames[MAXR+1]

This array must contain the names for every register. They do not necessar-
ily have to be used in the assembly output but are used for explicit register
arguments.

zmax regsize[MAXR+1]

This array must contain the size of each register in bytes. It is used to create
storage if registers have to be saved.

int regscratch[MAXR+1]

This array must contain information whether a register is a scratchregister,
i.e. may be destroyed during a function call (1 or 0). vbcc will generate code
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to save/restore all scratch-registers which are assigned a value when calling a
function (unless it knows the register will not be modified). However, if the code
generator uses additional scratch-registers it has to take care to save/restore
them.

Also, the code generator must take care that used non-scratch-registers are
saved/restored on function entry/exit.

int regsa[MAXR+1]

This array must contain information whether a register is in use or not at
the beginning of a function (1 or 0). The compiler will not use any of those
registers for register variables or temporaries, therefore this can be used to mark
special registers like a stack- or frame-pointer and to reserve registers to the
code-generator. The latter may be reasonable if for many ICs code cannot be
generated without using additional registers.

You must set regsratch[i] = 0 if regsa[i] == 1. If you want it to be saved
across function calls the code generator has to take care of this.

int reg_prio[MAXR+1];

This array must contain a priority (>=0) for every register. When the register
allocator has to choose between several registers which seem to be equal, it
will choose the one with the highest priority (if several registers have the same
priority it is undefined which one will be taken).

Note that this priority is only the last decision factor if everything else seems
to be equal. If one register seems to give a higher cost saving (according to the
estimation of the register allocator) but has a lower priority, it will nevertheless
be used. The priority can be used to fine-tune the register selection. Some
guidelines:

− Scratch registers might have a higher priority than non-scratch registers
(although the register-allocator will usually handle this anyway).

− Registers which are more restricted should have a higher priority (if they
seem to give the same saving it is usually better to use the restricted
registers and try to keep the more versatile ones for situation in which
they can give better savings).

− Registers which are used for argument-passing should have lower priority
than registers not used for arguments. The priority within the argument-
registers should decrease as the frequency of usage as argument increases
(typically the register for the first argument ist used most frequently, etc.).

Note that for the array zmax regsize[] the same comments mentioned in the section on
data types regarding initialization apply.

14.6.5 Functions

The following functions have to be implemented by the code generator. There may be
optional additional functions described in other sections.

int init_cg(void);

This function is called after the commandline arguments are parsed. It can
set up certain internal data, etc. The arrays regarding the data types and
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the register set can be set up at this point rather than with a static initializa-
tion, however the arrays regarding the commandline options have to be static
initialized. The results of the commandline options are available at this point.

If something goes wrong, 0 has to be returned, otherwise 1.

void cleanup_cg(FILE *f);

This function is called before the compiler exits. f is the output file which must
be checked against 0 before using.

int freturn(struct Typ *t);

This function has to return the number of the register return values of type
t are passed in. If the type is not passed in a register, 0 must be returned.
Usually the decision can be made only considering t->flags, ignoring the full
type (see Section 14.3.4 [compositetypes], page 110).

int regok(int r, int t, int mode);

Check whether the type t can be stored in register r and whether the usual
operations (for this type) can be generated. Return 0, if not.

If t is a pointer and mode==0 the register only has to be able to store the pointer
and do arithmetic, but if mode!=0 it has to be able to dereference the pointer.

mode==-1 is used with context-sensitive register-allocation (see Section 14.8.10
[targetralloc], page 135). If the backend does not support it, this case can be
handled equivalent to mode==0.

If t==0 return whether the register can be used to store condition codes. This
is only relevant if multiple_ccs is set to 1.

int dangerous_IC(struct IC *p);

Check if this IC can raise exceptions or is otherwise dangerous. Movement of
ICs which are dangerous is restricted to preserve the semantics of the program.

Typical dangerous ICs are divisions or pointer dereferencing. On certain targets
floating point or even signed integer arithmetic can raise exceptions, too.

int must_convert(int from,int to,int const_expr);

Check if code must be generated to convert from type from to type to. E.g.
on many machines certain types have identical representations (integers of the
same size or pointers and integers of the same size).

If const_expr != 0 return if a conversion was necessary in a constant expres-
sion.

For example, a machine may have identical pointers and integers, but different
sets of registers (one set supports integer operations and the other pointer
operations). Therefore, must_convert() would return 1 (we need a CONVERT

IC to move the value from one register set to the other).

This would imply that vbcc would not allow a cast from a pointer to an integer
or vice-versa in constant expressions (as it will not generate code for static
initializations). However, in this case, a static initialization would be ok as
the representation is identical and registers are not involved. Therefore, the
backend can return 1 if const_expr == 0 and 0 otherwise.
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int shortcut(int code, int t);

In C no operations are done with chars and shorts because of integral promotion.
However sometimes vbcc might see that an operation could be performed with
the short types yielding the same result.

Before generating such an instruction with short types vbcc will ask the code
generator by calling shortcut() to find out whether it should do so. Return
true iff it is a win to perform the operation code with type t rather than
promoting the operands and using e.g. int.

void gen_code(FILE *f, struct IC *p, struct Var *v, zmax offset);

This function has to emit code for a function to stream f. v is the function
being generated, p is a pointer to the list of ICs, that has to be converted.
offset is the space needed for local variables in bytes.

This function has to take care that only scratchregisters are destroyed by this
function. The array regused contains information about the registers that
have been used by vbcc in this function. However if the code generator uses
additional registers it has to take care of them, too.

The regs[] and regused[] arrays may be overwritten by gen_code() as well
as parts of the list of ICs. However the list of ICs must still be a valid list of
ICs after gen_code() returns.

All assembly output should be generated using the available emit functions.
These functions are able to keep several lines of assembly output buffered and
allow peephole optimizations on assembly output (see Section 14.8.14 [asmpeep-
hole], page 136).

void gen_ds(FILE *f, zmax size, struct Typ *t);

Has to emit output that generates size bytes of type t initialized with proper
0.

t is a pointer to a struct Typ which contains the precise type of the variable.
On machines where every type can be initialized to 0 by setting all bits to
zero, the type does not matter. Otherwise see Section 14.3.4 [compositetypes],
page 110.

All assembly output should be generated using the available emit functions.

void gen_align(FILE *f, zmax align);

Has to emit output that ensures the following data to be aligned to align bytes.

All assembly output should be generated using the available emit functions.

void gen_var_head(FILE *f, struct Var *v);

Has to print the head of a static or external variable v. This includes the label
and necessary informations for external linkage etc.

Typically variables will be generated by a call to gen_align() followed by gen_

var_head() and (a series of) calls to gen_dc() and/or gen_ds(). It may be
necessary to keep track of the information passed to gen_var_head().

All assembly output should be generated using the available emit functions.

void gen_dc(FILE *f, int t, struct const_list *p);

Emit initialized data. t is the basic type that has to be emitted. p points to a
struct const_list.
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If p->tree != 0 then p->tree->o is a struct obj which has to be emitted.
This will usually be the address of a variable of storage class static or unsigned,
possibly with an offset added (see Section 14.3.2 [operands], page 107 for further
details).

if p->tree == 0 then p->val is a union atyps which contains (in the member
corresponding to t) the constant value to be emitted.

All assembly output should be generated using the available emit functions.

void init_db(FILE *f);

If debug-information is requested, this functions is called after init_cg(), but
before any code is generated. See also Section 14.9.10 [debuginfo], page 141.

void cleanup_db(FILE *f);

If debug-information is requested, this functions is called prior to cleanup_

cg(). See also Section 14.9.10 [debuginfo], page 141.

14.7 Available Support Functions, Macros and Variables

This section lists a series of general variables, macros and functions which are available to
the backend and may prove useful. Note that there may be additional support specific to
certain features which will be mentioned at appropriate sections in this manual.

MAXINT A constant for the largest target integer type (zmax). It is outside the range of
the other types and cannot be accessed by an application (although there will
usually be an accessible type with the same representation).

MAX_TYPE The type number of the last type.

NQ A mask. t & NQ will delete all type-qualifiers of a type.

NU A mask. t & NU will delete all type-qualifiers but UNSIGNED of a type.

q1typ(p) Yields the type of the first source operand of IC p. Undefined if the operand is
not used!

q2typ(p) Yields the type of the second source operand of IC p. Undefined if the operand
is not used!

ztyp(p) Yields the type of the destination operand of IC p. Undefined if the operand is
not used!

iclabel(p)

Returns the label of an IC. Only defined if p->code is LABEL, BEQ, BNE, BLT,

BGT, BLE or BGE.

opsize(p)

Returns the size of the operand of an ASSIGN or PUSH IC as zmax.

pushsize(p)

Returns the stack-adjustment value of a PUSH IC as zmax. It is always greater
or equal than opsize(p).

pushedargsize(p)

Returns the space occupied by arguments passed on the stack as parameters
for a function call. Only valid for CALL ICs.
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isstatic(sc)

Tests whether the storage-class sc denotes a variable with static storage and
no external linkage.

isextern(sc)

Tests whether the storage-class sc denotes a variable with static storage and
external linkage.

isauto(sc)

Tests whether the storage-class sc denotes a variable with automatic storage-
duration.

t_min(t)

t_max(t) These macros yield the smallest and largest representable value of any target
integer type, e.g. t_min(INT) or t_max(UNSIGNED|LONG).

ISPOINTER(t)

ISINT(t)

ISFLOAT(t)

ISFUNC(t)

ISSTRUCT(t)

ISUNION(t)

ISARRAY(t)

ISSCALAR(t)

ISARITH(t)

These macros test whether the simple type t is a pointer type, an integral type,
a floating point type, a function, a structure type, a union type, an array type,
a scalar (integer, floating point or pointer) and an arithmetic type (integer or
floating point), respectively.

int label;

The number of the last label used so far. For a new label number, use ++label.

zmax falign(struct Typ *t);

This function returns the alignment of a full type. Contrary to the align[]

array provided by the backend (which is used by this function), it will yield
correct values for composite types like structures and arrays.

zmax szof(struct Typ *t);

This function returns the size in bytes of a full type. Contrary to the sizetab[]
array provided by the backend (which is used by this function), it will yield
correct values for composite types like structures and arrays.

void *mymalloc(size_t size);

void *myrealloc(void *p,size_t size);

void myfree(void *p);

Memory allocation functions similar to malloc(), realloc() and free. They
will automatically clean up the exit in the case an allocation fails. Also, some
debug possibilities are available.
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void emit(FILE *f,const char *fmt,...);

void emit_char(FILE *f,int c) ;

void emitval(FILE *f,union atyps *p,int t);

void emitzm(FILE *f,zmax x);

void emitzum(FILE *f,zumax x);

All output produced by the backend should be produced using these functions.
emit() uses a format like printf(), emitval(), emitzm() and emitzum() are
suitable to output target integers as decimal text. Currently emitting floating
point constants has to be done by the backend.

int is_const(struct Typ *);

Tests whether a full type is constant (e.g. to decide whether it can be put into
a ROM section).

int is_volatile_obj(struct obj *);

int is_volatile_ic(struct IC *);

Tests whether an object or IC is volatile. Only of interest to the backend in
rare cases.

int switch_IC(struct IC *p);

This function checks whether p->q2 and p->z use the same register (including
register pairs). If they do, it will try to swap p->q1 and p->q2 (only possible if
the IC is commutative). It is often possible to generate better code if p->q2 and
p->z do not collide. Note however, that it is not always possible to eliminate a
conflict and the code generator still has to be able to handle such a case.

The function returns 0 if no modification took place and non-zero if the IC has
been modified.

union atyps gval;

void eval_const(union atyps *p,int t);

void insert_const(union atyps *p,int t);

For every target data type there is a corresponding global variable of that
type, e.g. zchar vchar, zuchar vuchar, zmax vmax etc. These two functions
simplify handling of target data types by transferring between a union atyps

and these variables.

eval_const() reads the member of the union corresponding to the type t and
converts it into all the global variables while insert_const() takes the global
variable according to t and puts it into the appropriate member of the union

atyps.

The global variable gval may be used as a temporary union atyps by the
backend.
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void printzm(FILE *f,zmax x);

void printzum(FILE *f,zumax x) ;

void printval(FILE *f,union atyps *p,int t);

void printtype(FILE *o,struct Typ *p);

void printobj(FILE *f,struct obj *p,int t);

void printic(FILE *f,struct IC *p);

void printiclist(FILE *f,struct IC *first);

This is a series of functions which print a more or less human readable version
of the corresponding type to a stream. These functions are to be used only for
debugging purposes, not for generating code. Also, the arguments must contain
valid values.

bvtype

BVSIZE(n)

vbcc provides macros and functions for handling bit-vectors which may also
be used by the backend. bvtype is the basic type to create bit-vectors of.
BVSIZE(n) yields the number of bytes needed to implement a bit-vector with n

elements.

bvtype *mybv = mymalloc(BVSIZE(n));

BSET(bv,n)

BCLR(bv,n)

BTST(bv,n)

Macros which set, clear and test the n-th bit in bit-vector bv.

void bvunite(bvtype *dest,bvtype *src,size_t len);

void bvintersect(bvtype *dest,bvtype *src,size_t len);

void bvdiff(bvtype *dest,bvtype *src,size_t len);

These functions calculate the union, intersection and difference of two bit-
vectors. dest is the first operand as well as the destination. len is the length
of the bit-vectors in bytes, not in bits.

void bvcopy(bvtype *dest,bvtype *src,size_t len);

void bvclear(bvtype *dest,size_t len);

void bvsetall(bvtype *dest,size_t len);

These functions copy, clear and fill bit-vectors.

int bvcmp(bvtype *bv1,bvtype *bv2,size_t len);

int bvdointersect(bvtype *bv1,bvtype *bv2,size_t len);

These functions test whether two bit-vectors are equal or have a non-empty
intersection, respectively. The do not modify the bit-vectors.

14.8 Hints for common Optimizations

While it is no easy job to produce a stable code generator for a new target architecture,
there is a huge difference between a simple backend and a highly optimized code generator
which produces small and efficient high quality code. Although vbcc is able to do a lot
machine independent global optimizations for every target automatically, it is still common
for an optimized backend to produce code up to twice as fast on average as a simple one.
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Sometimes, a simple backend is sufficient and the work required to produce high-quality
code is not worthwile. However, this section lists a series of common backend optimizations
which are often done in case that good code-quality is desired. Note that neither are all of
these optimizations applicable (without modifications or at all) to all architectures nor is
this an exhaustive list. It is just a list of recommendations to consider. You have to make
sure that the optimization is safe and beneficial for the architecture you are targetting.

14.8.1 Instruction Combining

While ICs are often a bit more powerful than instructions of a typical microprocessor,
sometimes several of them can be implemented by a single instruction or more efficient
code can be generated when looking at a few of them rather than at each one separately.

In the simple case, this can be done by looking at the current IC, deciding whether it
is a candidate for combining and then test whether the next IC (or ICs) are suitable for
combining. This is relatively easy to perform, however some care has to be taken to verify
that the combination is indeed legal (e.g. what happens if the first IC modifies a value
which is used by the following IC).

A more sophisticated implementation might look at a larger sequence of instructions to find
more possibilities for optimization. Detecting whether the combination is legal becomes
much more difficult then.

Sometimes the IC migh compute a temporary result which would be eliminated by the
complex machine instruction. Then it is necessary to verify that it was indeed a temporary
result which is not used anywhere else. As long as the result is in a register, this can be
done by checking for a FREEREG IC.

Examples for instruction combining are multiply-and-add or bit-test instructions which are
available on many architectures. Special cases are complex addressing modes and instruc-
tions which can automatically set condition codes which are described in the following
sections.

14.8.2 Adressing Modes

The intermediate code generated by vbcc does not use any addressing-modes a target might
offer. Therefore the code generator must find a way to combine several statements if it wants
to make use of these modes. E.g. on the m68k the intermediate code

ADDI2P int a0,#20->a1

ASSIG int #10->(a1)

FREEREG a1

could be translated to

move.l #10,20(a0)

(notice the FREEREG which is important).

To aid in this there is a pointer to a struct AdressingMode in every struct obj. A code
generator could e.g. do a pass over the intermediate code, find possible uses for addressing-
modes, allocate a struct AddressingMode and store a pointer in the struct obj, effectively
replacing the obj.

If the code generator supports extended addressing-modes, you have to think of a way to
represent them and define the struct AddressingMode so that all modes can be stored in
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it. The machine independant part of vbcc will not use these modes, so your code generator
has to find a way to combine several statements to make use of these modes.

A possible implementation of a structure to handle the addressing mode described above
as well as a register-indirect mode could be:

#define IMM_IND 1

#define REG_IND 2

struct AddressingMode {

int flags; /* either IMM_IND or REG_IND */

int base; /* base register */

zmax offset; /* offset in case of IMM_IND */

int idx; /* index register in case of REG_IND */

}

When the code generator is done that pointer in every struct obj must either be zero or
point to a mymalloced struct AddressingMode which will be free’d by vbcc.

Following is an example of a function which traverses a list of ICs and inserts addressing
modes with constant offsets where possible.

/* search for possible addressing-modes */

static void find_addr_modes(struct IC *p)

{

int c,c2,r;

struct IC *p2;

struct AddressingMode *am;

for(;p;p=p->next){

c=p->code;

if(IMM_IND&&(c==ADDI2P||c==SUBIFP)&&

isreg(z)&&(p->q2.flags&(KONST|DREFOBJ))==KONST){

/* we have found addi2p q1,#const->reg */

int base;zmax of;struct obj *o;

eval_const(&p->q2.val,p->typf);

/* handle sub instead of add */

if(c==SUBIFP)

of=zmsub(l2zm(0L),vmax);

else

of=vmax;

/* Is the offset suitable for an addressing mode? */

if(ISVALID_OFFSET(vmax)){

r=p->z.reg;

/* If q1 is a register, we use it as base-register,

otherwise q1 is loaded in the temporary register

and this one used as base register. */

if(isreg(q1))
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base=p->q1.reg;

else

base=r;

o=0;

/* Now search the following instructions. */

for(p2=p->next;p2;p2=p2->next){

c2=p2->code;

/* End of a basic block. We have to abort. */

if(c2==CALL||c2==LABEL||(c2>=BEQ&&c2<=BRA)) break;

/* The temporary register is used. We have to abort. */

if(c2!=FREEREG&&(p2->q1.flags&(REG|DREFOBJ))==REG&&

p2->q1.reg==r)

break;

if(c2!=FREEREG&&(p2->q2.flags&(REG|DREFOBJ))==REG&&

p2->q2.reg==r)

break;

if(c2!=CALL&&(c2<LABEL||c2>BRA)&&c2!=ADDRESS){

/* See, if we find a valid use (dereference) of the

temporary register. */

if(!p->q1.am&&(p2->q1.flags&(REG|DREFOBJ))==(REG|DREFOBJ)&&

p2->q1.reg==r){

if(o) break;

o=&p2->q1;

}

if(!p->q1.am&&(p2->q2.flags&(REG|DREFOBJ))==(REG|DREFOBJ)&&

p2->q2.reg==r){

if(o) break;

o=&p2->q2;

}

if(!p->q1.am&&(p2->z.flags&(REG|DREFOBJ))==(REG|DREFOBJ)&&

p2->z.reg==r){

if(o) break;

o=&p2->z;

}

}

if(c2==FREEREG||(p2->z.flags&(REG|DREFOBJ))==REG){

int m;

if(c2==FREEREG)

m=p2->q1.reg;

else

m=p2->z.reg;

if(m==r){

/* The value of the temporary register is not used any more
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(either due to FREEREG or because it is overwritten).

If we have found exactly one dereference, we can use

a target addressing mode. */

if(o){

o->am=am=mymalloc(sizeof(*am));

am->flags=IMM_IND;

am->base=base;

am->offset=zm2l(of);

if(isreg(q1)){

/* The base already was in a register. We can

eliminate the ADDI2P IC. */

p->code=c=NOP;p->q1.flags=p->q2.flags=p->z.flags=0;

}else{

/* The base was not in a register.

We have to load it . */

p->code=c=ASSIGN;p->q2.flags=0;

p->typf=p->typf2;p->q2.val.vmax=sizetab[p->typf2&NQ];

}

}

break;

}

if(c2!=FREEREG&&m==base) break;

continue;

}

}

}

}

}

}

14.8.3 Implicit setting of Condition Codes

Many architectures have instruction that automatically set the condition codes according
to the computed result. For these architectures it is generally a good idea to keep track of
the setting of condition codes (e.g. if they reflect the state of some object or register). A
subsequent TEST or COMPARE instruction can then often be eliminated.

Care has to be taken to delete this information if either the condition codes may be modified
or the object they represent is modified. Also, this optimization is usually hard to do across
labels.

Some architectures provide versions of instructions which set condition codes as well as
versions which do not. This obviously enable more optimizations, but it is more difficult to
make use of this. One possibility is to search the list of ICs backwards starting from every
suitable TEST or COMPARE instruction. If an IC is found which computes the tested object,
the IC can be marked (extended ICs can be used for marking, see Section 14.8.13 [extic],
page 136).
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14.8.4 Register Parameters

While passing of arguments to functions can be done by pushing them on the stack, it is
often more efficient to pass them in registers if the architecture has enough registers.

To use register parameters you have to add the line

#define HAVE_REGPARMS 1

to machine.h and define a

struct reg_handle {...}

This struct is used by the compiler to find out which register should be used to pass an
argument. machine.c has to contain an initialized variable

struct reg_handle empty_reg_handle;

which represents the default state, and a function

int reg_parm(struct reg_handle *, struct Typ *, int vararg, struct Typ *);

which returns the number of the register the next argument will be passed in (or 0 if the
argument is not passed in a register). Also, it has to update the reg handle in a way that
successive calls to reg_parm() yield the correct register for every argument.

vararg is different from zero, if the argument is part of the variable arguments of a function
accepting a variable number of arguments.

It is also possible to return a negative number x. In this case, the argument will be passed
in register number -x, but also a stack-slot will be reserved for this argument (i.e. a PUSH

IC without an operand will be generated). If -double-push is specified, the argument will
also be written to the stack-slot (i.e. it will be passed twice, in a register and on the stack).

14.8.5 Register Pairs

Often, there are types which cannot be stored in a single machine register, but it may be
more efficient to store them in two registers rather than in memory. Typical examples are
integers which are bigger than the register size or architectures which combine two floating
point registers into one register of double precision.

To make use of register pairs, the line

#define HAVE_REGPAIRS 1

has to be added to machine.h. The register pairs are declared as normal registers (each
register pair counts as an own register and MAXR has to be adjusted). Usually only adjacent
registers are declared as register pairs. Note that regscratch must be identical for both
registers of a pair.

Now the function

int reg_pair(int r,struct rpair *p);

must be implemented. If register r is a register pair, the function has to set p->r1 and
p->r2 to the first and second register which comprise the pair and return 1. Otherwise,
zero has to be returned.
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14.8.6 Elimination of Frame-Pointer

Local variables on the stack can usually be addressed via a so-called frame-pointer which is
set set to current stack-pointer at the entry of a function. However, in the code generated
by vbcc, the difference between the stack-pointer and the frame-pointer is fixed at any
instruction.

Therefore it is possible to keep track of this offset (by counting the bytes every time code
for pushing or popping from the stack is generated). Using this offset, local variables can
perhaps be addressed using the stack-pointer directly. Benefit would be smaller function
entry/exit code as well as an additional free register which can be used for other purposes.

Note that only few debuggers can handle such a situation.

14.8.7 Delayed popping of Stack-Slots

In most ABIs arguments which are pushed on the stack are not popped by the called
function but the caller pops them by adjusting the stack after the callee returns (otherwise
variable arguments would be hard to implement).

If several functions are called in sequence, it is not necessary to adjust the stack after each
call but the arguments for several calls can be popped at once. It can be implemented by
keeping track of the size to be popped and deferring popping to a point where it has to be
done (e.g. a label or a branch). Also, in the case of nested calls, care has to be taken to
pop arguments at the right time.

Note that this usually saves code-size and execution time but will increase stack-usage.
Therefore, it may not be advisable for small systems.

14.8.8 Optimized Return

Return instructions are not explicitly represented in ICs. Rather, they are branches to a
label which is the last IC in the list (except possible FREEREGs).

It is possible to generate working code by translating these branches normally, but directly
inserting the function exit code instead of a branch is often faster. It is most recommendable
if the exit code is small (e.g. no registers have to be restored and no stack-frame removed).

Another common possibility for optimization is a function call as the last IC. If return
addresses are pushed on the stack and no function exit code is needed, it is usually possible
to generate a jump-instruction, i.e. replace

call somefunc

ret

by

jmp somefunc

14.8.9 Jump Tables

An important optimization is the creation of jump-tables for a series of comparisons with
constants. Such series are usually created by a C switch construct, but vbcc can also
recognize some of them if they are created through if-sequences.

supp.c provides the function calc_case_table(<IC>,<density>) to check for constructs
that can be replaced by a jump table. The arguments are the start IC to look for (it has
to be a COMPARE-IC with a constant as q2) and a minimal density. The density reflects the
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number of cases that are used divided by the range of cases. If the density is high, vbcc
will use jump-tables only for sequences that have few unused cases inside. If the case tables
occupy multiple ranges, vbcc is able to split them up and create multiple jump-tables.

calc_case_table returns a pointer to a struct case_table with the following content:

num The number of cases.

typf The type of the case IDs.

next_ic The first IC after the list of ICs that can be replaced by the jump-table.

density The case density.

vals The values of the case IDs (array containing num entries).

labels The labels of the code corresponding to the case IDs (array containing num

entries).

min The lowest case ID.

max The highest case ID.

diff max-min.

If the backend decides to emit a jump-table, it has to generate code that will check that the
control expression lies between min and max. If not, the jump-table must not be executed.
Code for the computed jump must then be generated. The actual table can be emitted
using emit_jump_table(). Processing can then continue with next_ic.

14.8.10 Context-sensitive Register-Allocation

The regok() function is only a simple means of telling the register allocator which registers
to use. It works fairly well with orthogonal register and instruction sets. However, it does
not really care about the operations performed and it allocates variables to registers only
according to their type, not according to the operations performed.

Some architectures provide different kinds of registers which are able to store a type, but
not all of them are able to perform all operations or some operations are more expensive
with some registers. To do good register allocation for these systems, the operations which
are used on variables have to be considered.

If the backend wants to support this kind of register allocation, it has to define HAVE_

TARGET_RALLOC and provide the following functions or macros:

int cost_move_reg(int x,int y);

The cost of copying register x to register y.

int cost_load_reg(int r,struct Var *v);

The cost of loading register r from variable v.

int cost_save_reg(int r,struct Var *v);

The cost of storing register r into variable v.

int cost_pushpop_reg(int r);

The cost of storing register r during function prologue and restoring it in the
epilogue.
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int cost_savings(struct IC *p,int r,struct obj *o);

Estimate the savings which would be obtained if the object o in IC p would be
assigned to register r (in this IC). If the backend was not able to emit code in
this case, INT_MIN must be returned.

If (o->flags & VKONST) != 0, the register allocator is thinking about putting
a constant (or address of a static variable) in a register. In this case, the real
object which would be put in a register is found in o->v->cobj.

The unit of the costs can be chosen by the backend, but should be some reasonable small
values.

If regok() is called with a third parameter of -1, it is possible to return non-zero for a register
which cannot perform all operations. The register allocator will call cost_savings() and
returning INT_MIN can be used to prevent this register from being allocated, if the register
is not suitable for a certain operation.

14.8.11 Inter-procedural Register-Allocation

To support inter-procedural register allocation, the backend must tell the optimizer which
registers are used by a function. As the backend might use some registers internally, the
frontend can not know this.

Apart from defining HAVE_REGS_MODIFIED in machine.h, the backend has to mark all reg-
isters that are modified in the bitfield regs_modified. A register can be marked with
BSET(regs_modified,<reg>). For a call IC, the function calc_regs() (from supp.h) can
be called to mark the registers used by a call IC. It will return 1 if it was able to determine
all registers used by this IC.

If the register usage could be determined for the entire function, the backend can set the
bit ALL_REGS in the fi-member of the function variable (v->fi->flags|=ALL_REGS;).

14.8.12 Conditional Instructions

FIXME: To be written.

14.8.13 Extended ICs

If the backend defines HACE_EXT_IC, it has to define a struct ext_ic in machine.h. This
structure will be added to each IC and can be used by the backend for private use.

14.8.14 Peephole Optimizations on Assembly Output

Some optimizations are easier to do on the generated assembly code rather than doing them
before emitting code. Therefore it is possible to do peephole optimizations on the emitted
code before it is really written to a file.

EMIT_BUF_DEPTH lines will be stored in a ring buffer and are available to examination and
modification by a function emit_peephole(). The actual assembly output is stored in
emit_buffer, the index of the first line to be output in emit_f and the index of the last
one in emit_l (note that you have to calculate modulo EMIT_BUF_DEPTH - it is a ring buffer).

The output may be modified in memory and the first line may be removed using remove_

asm(). If a modification took place, a non-zero value has to be returned (0 otherwise). The
following example code would combine two consecutive additions to the same register:
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int emit_peephole(void)

{

int entries,i,r1,r2;

long x,y;

/* pointer to the lines in order of output */

char *asmline[EMIT_BUF_DEPTH];

i=emit_l;

/* compute number of entries in ring buffer */

if(emit_f==0)

entries=i-emit_f+1;

else

entries=EMIT_BUF_DEPTH;

/* the first line */

asmline[0]=emit_buffer[i];

if(entries>=2){

/* we have at least two line sin the buffer */

/* calculate the next line (modulo EMIT_BUF_DEPTH) */

i--;

if(i<0) i=EMIT_BUF_DEPTH-1;

asmline[1]=emit_buffer[i];

if(sscanf(asmline[0],"\tadd\tR%d,#%ld",&r1,&x)==2&&

sscanf(asmline[1],"\tadd\tR%d,#%ld",&r2,&y)==2&&

r1==r2){

sprintf(asmline[1],"\tadd\tR%d,#%ld\n",r1,x+y);

remove_asm();

return 1;

}

}

return 0;

}

Be very careful when doing such optimizations. Only perform optimizations which are really
legal. Especially assembly code often has side effects like setting of flags.

Depending on command line flags inline assembly code may or may not be passed through
this peephole optimizer. By default, it will be done, enabling optimizations between gener-
ated code and inline assembly.

14.8.15 Marking of efficient ICs

If the backend sets HAVE_EFF_ICS in machine.h, it has to provide a function void mark_

eff_ics(void). This function will be called (possibly multiple times) by the frontend. The
function has to set or clear the bit EFF_IC in the member flags of every IC.

The flag should be set when the operation is in a context that suggests it will translate to
efficient machine code. The optimizer will transform this IC less aggressively.

As this is all happens before register allocation, the decision is of a very heuristic nature.
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14.8.16 Function entry/exit Code

At entry and exit of function, there is usually some code to set up the new environment
for this function. For example, registers will have to be saved/restored, a frame pointer
may be set up and a stack frame will be created. It is generally worthwile to optimize this
entry/exit code. For example, if no registers need to be saved and no local variables are
used on the stack, it may not be necessary to create a stack frame.

The exact possibilities for optimization depend on the architecture and the ABI.

14.8.17 Multiplication/division with Constants

Many architectures do not provide instruction for multiplication, division or modulo calcula-
tion. And on most architectures providing such instructions they are rather slow. Therefore,
it is recommended to emit cheaper instructions, if possible.

Usually, this can only be done if one operand of the operation is a constant. Multiplications
may be replaced by a series of shift and add instructions, for example. The simplest and
most important cases to replace are multiplication, division and modulo with a power of
two. Multiplication by x can be replaced by a left shift of log2(x), unsigned division of x
can be replaced by logical right shift of log2(x) and unsigned modulo by x can be replaced
by anding with x-1.

Note that signed division and modulo can usually not be replaced that simple because
most division instructions give different results for some negative values. An additional
adjustment would be necessary to get correct results. Whether this is still an improvement,
depends on the architecture details.

The following function can be used to test whether a value is a power of two:

static long pof2(zumax x)

/* Yields log2(x)+1 oder 0. */

{

zumax p;int ln=1;

p=ul2zum(1L);

while(ln<=32&&zumleq(p,x)){

if(zumeqto(x,p)) return ln;

ln++;p=zumadd(p,p);

}

return 0;

}

14.8.18 Block copying

There are many cases of copying of larger data. For the backend, those will mostly be used
in PUSH and ASSIGN ICs. It is very important to implement those as efficient as possible.

Some things to consider:

− When alignment is known, use word-copy instead of byte-copy.

− Copy small blocks by a series of copy instructions.

− For larger blocks, loading addresses in registers may help.

− For large blocks, use a loop. Implement it efficiently and try to unroll the loop a few
times.
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− For very large blocks, calling a library function may be useful. While this creates some
overhead, the function can dynamically check the alignment or perhaps even use special
hardware, if available.

− Set INLINEMEMCOPY to reasonable values. Set it to a very high value if you implement
very good block copying.

14.8.19 Optimized Library Functions

FIXME: To be written.

14.8.20 Instruction Scheduler

FIXME: To be written.

14.9 Hints for common Extensions

This section lists some common extensions to the C language which are often very helpful
when using a compiler in practice. Depending on the kind of target system they may range
from nobody-really-cares to absolutely essential. For example, consider the ability to specify
the section within an object file a variable or function should be placed in. This is rarely
of any interest when targetting a Unix-like operating system. On a stand-alone embedded
system, however, it may be absolutely necessary.

Therefore, consider this list as a recommendation of ideas that might be helpful.

14.9.1 Inline Assembly

The possibility to insert assembly code into C source is very handy in many cases. It can be
used in headers to implement specially optimized versions of time-critical library routines or
enable access to CPU features which are not otherwise accessible by normal C constructs.

In general, almost all work is done by the frontend and only a few lines have to be inserted
in the backend to make it work. Therefore, it is recommended to always support this
important feature.

Everything that has to be done is to check a certain condition when code for a CALL IC
is generated. Instead of emitting a normal call instruction, call the emit_inline_asm()

function:

if((p->q1.flags & (VAR|DREFOBJ)) == VAR &&

p->q1.v->fi &&

p->q1.v->fi->inline_asm){

emit_inline_asm(f,p->q1.v->fi->inline_asm);

}else{

emit(f,"\tcall\t");

emit_obj(f,&p->q1,t);

emit(f,"\n");

}

Note that argument-passing, adjusting the stack after a CALL IC etc. is not affected. Only
the actual emitting of call code is changed in the case of inline assembly.
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14.9.2 -speed/-size

Often it is desired to generate code which runs as fast as possible but sometimes small code
is needed. The command line options -speed and -size are provided for the user to specify
his intention.

These options already may change the intermediate code produced by the frontend, but
the backend should also respect these switches, if possible. The variables optspeed and
optsize can be queried to see if these options were specified.

If e.g. optspeed was specified, the backend should choose faster code-sequences, even if
code-size is increased significantly. Vice-versa, if optsize is specified, it should always
choose the shorter code if there is a trade-off between size and speed.

Typical cases for such tradeoffs are for example, block-copy (ASSIGN and PUSH) ICs. Often
it is possible to call a library function or generate a simple short loop for small code, but
an unrolled inlined loop for fast code.

14.9.3 Target-specific Macros

A backend is able to provide macro definitions which are automatically active. It is recom-
mended to define macros which allow applications to query the target architecture and the
selected chip (if possible). Also, it is recommended to provide internal macros for backend
specific attributes using the __attr() and __vattr() attributes.

The definition of these macros can be done in init_cg() (the results of command line
parsing are available at this point). There is a variable

char **target_macros;

which can be set to an array of pointers to strings which contain the macro definitions.
The array has to be terminated by a null pointer and the syntax of the macro definitions is
similar to the command line option -D:

static char *marray[] = {

"__TARGET_ARCH__",

"__section(x)=__vattr(\"section(\"#x\")\")",

0

};

...

target_macros = marray;

14.9.4 stdarg.h

FIXME: To be written.

14.9.5 Section Specifiers

Especially for embedded systems it can be very important to be able to place variables and
functions in specific section to override default placement. This can relatively easily be done
using variable attributes (see Section 14.9.6 [targetattributes], page 140).

14.9.6 Target-specific Attributes

There are two ways of adding target-specific attributes to variables and functions. A general
way is the use of __vattr() which will add the string argument to the vattr member of
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the corresponding struct Var, separating it by a semi-colon. The backend can use this
information by parsing the string. The frontend will just build the string, it will not interpret
it. If a backend offers attributes using the __vattr() mechanism, it is recommended to
provide target-specific macros (see Section 14.9.3 [targetmacros], page 140) which expand
to the appropriate __vattr()-syntax. Only these macros should be documented.

A second way to specify attributes is enabled by adding

#define HAVE_TARGET_PRAGMAS 1

to machine.h and adding an array

char *g_attr_name[];

to machine.c. This array should point to the strings used for the attributes, terminated
by a null-pointer, e.g.:

char *g_attr_name[] = {

"__far",

"__near",

"__interrupt",

0

};

These attributes can be queried in the member

unsigned long tattr;

of a struct Var. The first attribute is represented by bit 1, the second by bit 2 and so
on. Using this mechanism, the frontend will check for redeclarations with different setting
of attributes or multiple specification of attributes. However, only boolean attributes are
possible. If parameters have to be specified, the __vattr()-mechanism has to be used.

14.9.7 Target-specific #pragmas

FIXME: To be written.

14.9.8 Target-specific extended Types

FIXME: To be written.

14.9.9 Target-specific printval

FIXME: To be written.

14.9.10 Debug Information

Debug information which enables (source level) debugging of compiled programs is an im-
portant feature to improve the user-friendliness of a compiler. Depending on the object for-
mat and debugger used, the format and capabilities of debug information can vary widely.
Therefore, it is the responsibility of each backend to generate debug information. However,
for common debug standards there will be modules which can be used by the backends
and will do most of the work. Currently there is one such module for the DWARF2 debug
standard.

The compiler frontend provides a variable debug_info which can be queried to test whether
debug information is desired. Also, the functions init_db() and cleanup_db() are helpful.
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Each struct Var contains the members char *dfilename and int dline which specify the
file and line number of the variable’s definition. Also, every IC contains the members char
*file and int line with the file name and line number this IC belongs to. Note however,
that there may be ICs with file == 0 - not all ICs can be assigned a certain code location.
Also, ICs do not always have increasing line numbers and line numbers may repeat. Not
all debuggers may be able to deal with this.

14.9.10.1 DWARF2

There is support for the DWARF2 debug standard which can be added to a backend rather
easily. The following additions are necessary:

1. Add the line

#include "dwarf2.c"

to machine.c.

2. Add the following lines to init_db():

dwarf2_setup(sizetab[POINTER],

".byte",

".2byte",

".4byte",

".4byte",

labprefix,

idprefix,

".section");

dwarf2_print_comp_unit_header(f);

The arguments to dwarf2_setup() have the following meanings:

1. The size of an address on the target.

2. An assembler directive to create one byte of initialized storage.

3. An assembler directive to create two bytes of initialized storage (without any
padding for alignment).

4. An assembler directive to create four bytes of initialized storage (without any
padding for alignment).

5. An assembler directive to create initialized storage representing a target address
(without any padding for alignment).

6. A prefix which is used for emitting numbered labels (or empty string).

7. A prefix which is used for emitting external identifiers (or empty string).

8. An assembler directive to switch to a new named section.

3. Add the line

dwarf2_cleanup(f);

to cleanup_db().

4. Write the function

static int dwarf2_regnumber(int r);

which returns the DWARF2 regnumber for a vbcc register number.

5. Write the function
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static zmax dwarf2_fboffset(struct Var *v);

which returns the offset of variable v from the DWARF2 frame-pointer.

6. Write the function

static void dwarf2_print_frame_location(FILE *f,struct Var *v);

which prints a DWARF2 location of the frame pointer. It can use the function

void dwarf2_print_location(FILE *f,struct obj *o);

to output the location. For example, if the frame pointer is a simple register, it might
look like this:

static void dwarf2_print_frame_location(FILE *f,struct Var *v)

{

struct obj o;

o.flags=REG;

o.reg=frame_pointer_register;

o.val.vmax=l2zm(0L);

o.v=0;

dwarf2_print_location(f,&o);

}

7. Before emitting code for an IC p, execute the code

if(debug_info)

dwarf2_line_info(f,p);

8. After emitting code for a function v, a new numbered label has to be emitted after the
function code and the function

void dwarf2_function(FILE *f,struct Var *v,int endlabel);

must be called.

Note that the DWARF2 standard supports use of location lists which can be used to describe
a variable whose location changes during the program (e.g. in a register for some time, then
in memory and again in a register) as well as a moving frame pointer (very useful if no
separate frame pointer is used but all local variables are accessed through a moving stack
pointer). Unfortunately, none of the debuggers I have tried so far could handle these location
lists. Therefore, the current DWARF2 module does not output location lists, but future
version will probably offer them as an option.

Without location lists, accessing local variables will only work with a fixed frame pointer and
no register variables. Even with these restrictions, function parameters which are passed in
registers will not be correctly displayed during the function entry code.

14.9.11 Interrupt Handlers

Especially for embedded systems, support for writing interrupt handlers in C is a common
feature. Variable attributes (see Section 14.9.6 [targetattributes], page 140) can be used to
mark functions which are used as interrupt handlers.

Typical changes which might be necessary for interrupt handlers are:

− Using a different return instruction.

− Saving all modified registers, including scratch-registers.

− Creating an entry in the interrupt vector table.
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14.9.12 Stack checking

Dynamic checking of the stack used (or possibly extending the stack size if possible) is
another useful feature. If the variable stack_check is set, stack-checking code should
be emitted, if possible. Every function should call a library function (usually called __

stack_check) and pass the maximum size of stack used in this function as argument. This
obviously has to be done before allocating the stack-frame.

The library function is responsible to take into account its own stack-frame.

14.9.13 Profiling

FIXME: To be written.

14.9.14 Variable-length Arrays

With the -c99 option, vbcc supports variable-length arrays that are allocated on the stack.
The backend has to take several steps to support this:

vlas When this variable is non-zero, the current function uses variable-length ar-
rays. The backend may take necessary steps to support this. For example, if
local variables are usually addressed via stackpointer, switching to a separate
framepointer may be necessary.

ALLOCVLA_INLINEASM

This define must contain inline code that is called when a vla is allocated. It
has to create additional room on the stack and return a pointer to the beginning
of the new space.

ALLOCVLA_REG

The register in which to pass the size to be allocated on the stack. 0 will pass
on the stack.

FREEVLA_INLINEASM

This define must contain inline code that is called when a vla is freed. It has
to restore the old stack pointer.

FREEVLA_REG

The register in which to pass the old stack pointer. 0 will pass on the stack.

OLDSPVLA_INLINEASM

This define must contain inline code that is called before the first vla is allocated.
It has to return the current stack pointer before any vla has been allocated.

FPVLA_REG

An additional register used in functions containing vlas. The backend can
specify a register (usually framepointer) that can not be used in functions with
vlas. Therefore, it is possible to use this register in other functions (for example,
if local variables are usually addressed directly through the stackpointer).

14.9.15 Library Calls

Sometimes operations may be very complicated to generate code for (e.g. floating-point
operations for machines without FPU, multiplication/division on some architectures or big
data types like long long). Those are usually implemented by calling library functions.
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vbcc can be told to generate calls to library functions for certain ICs. When
defining HAVE_LIBCALLS, the backend must provide the function char *use_

libcall(<code>,<typf>,<typf2>). This function gets called with the elements code,
typf and typf2 of an IC. If use_libcall returns a name, this library function will be
called instead of the IC. Otherwise, 0 must be returned.

All library functions have to be declared in init_cg() with declare_builtin(), supporting
the following arguments:

name The name of the library function. Usually, a reserved identifier should be chosen
(e.g. starting with __).

ztyp The return type of the function (only integral and float types are supported).

q1typ The type of the first parameter (only integral and float types are supported).

q1reg The register to pass the first argument in (0 passes via stack).

q2typ The type of the second parameter (only integral and float types are supported).
For functions with a single parameter, use 0.

q2reg The register to pass the second argument in (0 passes via stack).

nosidefx If this is non-zero, the function will be declared to have no side-effects and allow
some more optimizations.

inline_asm

Inline assembly can be specified for the function.

Note that not all ICs can be converted to library calls.

14.10 Changes from 0.7 Interface

The backend interface has changed in several ways since vbcc 0.7. The following list men-
tions most(all?) differences between the old and new interfaces (not including new optional
features which do not have to be used):

− There are more types (LLONG, LDOUBLE, MAXINT). Therefore the align[] and
sizetab[] arrays have dimension MAX_TYPES+1 rather than 16.

− The representation and access of t_min[] and t_max[] has been changed.

− zmax replaces zlong as largest integer target type. zlong is only used when actually
referring to a long on the target. Also, the macros for target arithmetic are available
for zmax/zumax instead of zlong/zulong.

− PUSH ICs contain a second size (actual stack-adjustment).

− The second argument of SHIFT ICs has an own type.

− DREFOBJ objects contain the type of the dereferenced pointer (only meaningful if there
are different pointer types).

− The new CONVERT IC replaces the series of old ICs (CONVINT etc.).

− emit()-functions have to be used to generate output rather than fprintf().

− The functions init_db() and cleanup_db() have to be provided (they do not have do
to anything).
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− A new array reg_prio[] is needed and controls the order in which registers are allo-
cated.

− The parameters of must_convert() have changed.

− Static functions must not use identifiers, but have to use numbered labels.

Volker Barthelmann vb@compilers.de
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